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Abstract: Cinnamomum osmophloeum Kanehira (CO) is an endemic species of Taiwan. This study
elucidated the composition of CO hydrosol, revealing trans-cinnamaldehyde (65.03%), trans-cinnamyl
acetate (7.57%), and coumarin (4.31%) as the main volatile compounds. Seven compounds were
identified in the water fraction of hydrosol, including a novel compound, 2-(2-hydroxyphenyl)oxetan-
3-ol. This marks the first investigation into high-polarity compounds in hydrosol, extending beyond
the volatile components. Notably, two compounds, trans-phenyloxetan-3-ol and cis-phenyloxetan-
3-ol, demonstrated significant inhibition activity against phosphodiesterase type five (PDE5), with
IC50 values of 4.37 µM and 3.40 µM, respectively, indicating their potential as novel PDE5 inhibitors.
Furthermore, CO hydrosol was evaluated against enzymes associated with erectile dysfunction,
namely acetylcholinesterase (AChE), angiotensin-I converting enzyme (ACE), and arginase type
2 (ARG2). These findings underscore the potential of CO hydrosol to modulate erectile function
through diverse physiological pathways, hinting at its prospects for future development in a beverage
or additive with enhanced effects on erectile function.

Keywords: Cinnamomum osmophloeum Kanehira; hydrosol; PDE5; erectile dysfunction

1. Introduction

Hydrosol, also known as floral waters, is the water obtained by the condensation
of plants in the process of water distillation or steam distillation to extract essential oils.
Although hydrosol and essential oils are not miscible, they often share similar properties,
such as fragrance, and contain water-soluble ingredients. Terms like herbal distillates,
floral waters, hydrolates, herbal water, and essential waters are often used interchangeably
with hydrosol in the market and articles [1]. Hydrosols have various uses in natural
fragrances, lotions, creams, facial toners, and other skin care products or toiletries. They
can be added to bath water as eau de toilette, cologne, body spray, or even wet wipes for
fragrance. According to Market Research Future, the global hydrosol market is estimated
to grow at a rate of 5.17% from 2019 to 2024, and the market value is expected to reach
USD 437 million by 2024. Europe currently dominates the hydrosol market, accounting
for 39.9% of the global market share in 2018, mainly due to France and Italy’s reputation
as distribution centers of world-renowned perfumes and fragrances, along with the rising
demand for natural and organic ingredients in personal care. The European market has
been consistently increasing and has become the central hub of hydrosol trade [2].

Hydrosols have a composition that is similar to essential oils, but with fewer compo-
nents, as noted in various studies [3–9]. Hydrosols are mainly utilized for their antioxidative
and antibacterial properties [7,9–11] and are often used for food or fruit preservation [12–14].
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Despite the widespread use of hydrosols, there is a lack of scientific evidence to support
their effectiveness. Some studies have even suggested that hydrosols are less biologically
active than essential oils [15–17]. The main reason for this is that the chemical composition
of hydrosol is still unclear. Currently, the analysis of hydrosol components is primarily
focused on volatile compounds, while research on non-volatile components, such as polar
components, is lacking.

Cinnamon is a highly valued spice in both Eastern and Western cultures. It has a
long history of use in traditional oriental medicine as a medicinal material. Cinnamomum
osmophloeum Kanehira (CO) is a tree species endemic to Taiwan, and its leaf essential
oil has a composition similar to that of cinnamon. The CO leaf methanolic extract is
highly sweet, and the compound responsible for this sweetness has been identified as
trans-cinnamaldehyde, which is present at 1.03% w/w [18]. The essential oils extracted from
CO leaves have been shown to possess bioactivity against various organisms, including
bacteria [19], termites [20], mildew [21], and fungi [22]. Additionally, we have investi-
gated the potential use of CO leaves in food supplements and found that the essential oils
and their dominant compound, trans-cinnamaldehyde, exhibit potent xanthine oxidase
inhibitory activity and have an anti-hyperuricemia effect in mice [23]. Apart from essential
oils, oral administration of CO hot water extracts or leaves to hyperlipidemic hamsters has
been found to reduce total cholesterol, triglyceride, and low-density lipoprotein choles-
terol levels [24,25]. More recently, our research demonstrated that CO effectively lowers
hyperglycemia and improves metabolic syndrome in obese mice. We also observed that
CO improved gut microbiota dysbiosis by reducing the Firmicutes-to-Bacteroidetes ratio
and increasing the abundance of Akkermansia spp. These findings suggest that CO has the
potential to serve as a prebiotic dietary supplement to alleviate obesity-related metabolic
disorders and gut dysbiosis [26].

Compared to essential oils, research on the activity and components of hydrosol is
relatively scarce. In Taiwan, CO is a special and essential spicy plant, and its hydrosol
produced during the essential oil production process has found widespread use. However,
there are barely any scientific studies on the compositional analysis and activity exploration
of CO hydrosol. Therefore, this study aimed to analyze the components of CO hydrosol and
investigate its inhibitory activity on PDE5. PDE5 inhibitors have proven effective in treating
erectile dysfunction by relaxing smooth muscle and increasing cGMP levels in smooth
muscle cells, leading to the production of more endothelial nitric oxide synthase (eNOS)
and nitric oxide (NO). Our research has discovered that CO hydrosol and its components
significantly inhibit the activity of the PDE5 enzyme.

2. Results and Discussion
2.1. Chemical Composition of CO Essential Oil and Hydrosol

The major constituents of CO essential oil and the hydrosol EA fraction were de-
termined via GC-MS analysis, and their relative contents (%) are presented in Table 1.
In the essential oil, the prominent compounds include trans-cinnamaldehyde (68.38%),
trans-cinnamyl acetate (18.52%), and β-caryophyllene (1.87%). Conversely, the hydrosol
EA fraction contains trans-cinnamaldehyde (65.03%), trans-cinnamyl acetate (7.57%), and
coumarin (4.31%). The GC-MS analysis revealed that the chemical composition was similar
between CO essential oil and the EA fraction.

The lyophilization hydrosol water fraction underwent C-18 silica gel column chro-
matography, yielded three sub-fractions (A–C). Sub-fraction A constituted 49.3% of the total
water fraction and was purified via reverse-phase HPLC (Figure 1). It was then analyzed
by NMR and mass spectrometry (MS), resulting in the purification of seven compounds
(The NMR spectra were shown in the Supplementary Information).
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Table 1. GC-MS analysis of CO essential oil and the hydrosol EA fraction.

RT (min) Compound Composition (%)
KI IdentificationEO EA EO EA

9.25 - α-Pinene 1.25 - 936 KI, MS, ST
9.89 - Camphene 0.70 - 952 KI, MS, ST
10.37 10.64 Benzaldehyde 0.41 0.66 965 KI, MS, ST
11.04 - β-Pinene 0.32 - 979 KI, MS, ST
13.32 - Limonene 0.17 - 1031 KI, MS, ST

- 14.13 Salicylaldehyde - 0.21 1044 KI, MS
- 19.05 Vinylphenylcarbinol - 0.35 1150 KI, MS

19.43 19.62 Benzenepropanal 0.93 0.72 1162 KI, MS
20.30 20.48 Terpinen-4-ol 0.03 0.02 1179 KI, MS, ST
20.99 21.18 α-Terpineol 0.01 0.11 1193 KI, MS, ST
21.12 21.3 Estragole 1.06 0.01 1196 KI, MS, ST
22.00 22.21 cis-Cinnamaldehyde 0.28 0.46 1216 KI, MS, ST

- 24.22 p-Allylphenol - 0.34 1261 KI, MS
24.53 25.07 trans-Cinnamaldehyde 68.38 65.03 1279 KI, MS, ST
25.04 25.30 Bornyl acetate 1.03 0.15 1283 KI, MS, ST

- 26.25 Cinnamyl alcohol - 1.94 1303 KI, MS, ST
28.00 28.17 Eugenol 0.76 0.78 1351 KI, MS, ST
29.01 - α-Copaene 0.60 - 1374 KI, MS, ST

- 29.96 Vanillin - 0.13 1389 KI, MS, ST
30.82 - β-Caryophyllene 1.87 - 1416 KI, MS, ST

- 31.68 Coumarin - 4.31 1430 KI, MS, ST
31.94 32.26 trans-Cinnamyl acetate 18.52 7.57 1444 KI, MS, ST
34.88 - δ-Cadinene 1.00 - 1515 KI, MS

- 35.35 Ethyl
4-ethoxybenzoate - 2.76 1519 KI, MS

37.30 - Caryophyllene oxide 0.16 - 1577 KI, MS
48.50 - Sclarene 0.36 - 1931 KI, MS

KI: Kovats retention index on DB-5MS column in reference to n-alkanes. ST: Authentic standard compounds. MS:
NIST and Wiley library literature.
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and this is the first time they were obtained from natural products. Interestingly, com-
pound 5 was isolated from lavender hydrosol [31], and we identified the same component 
in different hydrosols. 

  

Figure 1. The profile spectrum of sub-fraction A of CO hydrosol water fraction. (The numbers 1–7
correspond to compounds 1–7).

Based on the NMR spectr0 and compared with the literature, compounds 1–6 were
identified as trans-2-methyloxetan-3-ol (1) [27], cis-2-methyloxetan-3-ol (2) [27], 3-methoxy-
4-hydroxyphenylglycol (3) [28], cis-phenyloxetan-3-ol (4) [29,30], 5-(2-hydroxypropan-2-yl)-
2-methylcyclohex-3-ene-1,2-diol (5) [31], and trans-phenyloxetan-3-ol (6) [29,30] (Figure 2).
Compounds 1, 2, 4, and 6 were previously reported as synthetic intermediates, and this
is the first time they were obtained from natural products. Interestingly, compound
5 was isolated from lavender hydrosol [31], and we identified the same component in
different hydrosols.
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Figure 2. Structure of compounds 1 to 7.

Compound 7 showed a molecular formula of C9H10O3 established by HRMS
([M − H]− m/z 165.0559). The 1H NMR spectrum displayed a methylene proton at δH 4.15
(1H, ddd, J = 11.6, 4.8, 1.2 Hz; 1H, dd, J = 11.6, 2.4 Hz); two methine protons at δH 3.88
(1H, td, J = 4.4, 2.4 Hz) and δH 4.47 (1H, d, J = 4.4 Hz); and four aromatic protons, showing
a ortho substitution benzene at δH 6.81 (1H, dd, J = 8.4, 0.8 Hz), δH 6.93 (1H, td, J = 7.6,
0.8 Hz), δH 7.18 (1H, td, J = 8.4, 1.6 Hz), and δH 7.36 (1H, dd, J = 7.6, 1.6 Hz). The methylene
and methine protons exhibited downfield chemical shifts, indicating their attachment to
the oxygen and inducing deshielding effects.

The 13C, DEPT, and HSQC experiments displayed nine carbon signals, including two
methine carbons at δC 69.1 (C-2) and 69.3 (C-3); a methylene carbon at δC 67.2 (C-4); and
an aromatic system at δC 124.2 (C-5), 155.5 (C-6), 117.5 (C-7), 130.3 (C-8), 121.8 (C-9), and
132.0 (C-10). C-2, C-3, C-4, and C-6 were linked to oxygen. The degrees of unsaturation
were 5, including an aromatic system with no indication of an olefinic bond, suggesting the
presence of another ring system in the structure. The HMBC experiment showed H-4a/C-3,
and C-6 indicated that the ring system was a lactone structure. Based on the above evidence,
compound 7 was elucidated as 2-(2-hydroxyphenyl)oxetan-3-ol (Figure 2). Table 2 presents
the 1H and 13C NMR chemical shift data of compound 7.

Table 2. 1H and 13C NMR chemical shift data of compound 7 (δ ppm, in CD3OD).

Position 13C 1H HMBC

2 69.1 4.47 (d, J = 4.4 Hz, 1H)
3 69.3 3.88 (td, J = 4.4, 2.4 Hz, 1H)
4 67.2 4.10 (ddd, J = 11.6, 4.8, 1.2 Hz, 1H) C-3, C-6

4.21 (dd, J = 11.6, 2.4 Hz, 1H)
5 124.2 -
6 155.5 -
7 117.5 7.36 (dd, J = 7.6, 1.6 Hz, 1H) C-5, C-9
8 130.3 7.18 (td, J = 8.4, 1.6 Hz, 1H) C-6, C-10
9 121.8 6.93 (td, J = 7.6, 0.8 Hz, 1H) C-5, C-7

10 132.0 6.81 (dd, J = 8.4, 0.8 Hz, 1H) C-5, C-9

2.2. PDE5 Inhibition Activity of Different CO Extracts

Phosphodiesterase type V (PDE5) is a cGMP-specific hydrolase. The inhibition of PDE5
decreases the breakdown of cGMP and causes vasodilation in the penis and lungs. Different
types of CO extracts were used for the in vitro PDE5 inhibition assay, including methanol
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extracts, hot water extracts, essential oil, and hydrosol. Additionally, 10 nM sildenafil was
used as a positive control [32]. As shown in Figure 3, except for the essential treatment, all
other extracts revealed good PDE5 inhibition activity, especially the hydrosol treatment,
which demonstrated efficacy at low concentrations. The PDE5 inhibition rates at the dosages
of 0.025, 0.05, and 0.1 µg/mL of hydrosol were 35.4%, 49.9%, and 70.7%, respectively.

Through component analysis, it could be deduced that the chemical composition of
CO hydrosol closely resembles that of essential oil. Notably, the ethyl acetate fraction
constitutes 0.13% of the hydrosol, with trans-cinnamaldehyde emerging as the principal
component. This suggests the presence of potentially potent compounds within the water
fraction, which constitutes a mere 0.044% of the hydrosol, exhibiting notable inhibitory
effects on PDE5. Consequently, additionally activity assays and component analysis were
carried out on the hydrosol water fraction.
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Figure 3. Inhibition activity of PDE5 by different CO leaf extracts (Me, MeOH extract; HW, hot water
extract; EO, essential oil; h, hydrosol). Statistical analysis using one-way ANOVA. Different letters
indicate significant differences between the different groups (p < 0.05).

2.3. PDE5 Inhibition Activity of CO Hydrosol and Its Active Compounds

As shown in Figure 4, the hydrosol ethyl acetate fraction presented a similar PDE5
inhibition effect to essential oil. Their inhibition rates at the dosages of 100 µg/mL were
25.5% and 25.8%, respectively. This was expected as they contain similar chemical compo-
sitions. The main component in both is trans-cinnamaldehyde. In Dell’ Agli’s study, the
inhibition rate of trans-cinnamaldehyde at a concentration of 10 µM was less than 20% [33],
which also corroborates our findings. The PDE5 inhibition rates at the dosages of 1.25,
2.5, 5, 10, and 20 µg/mL of the hydrosol water fraction were 7.4%, 31.4%, 36.9%, 42.4%,
and 47.5%, respectively. The treatment of the hydrosol water fraction with increasing
concentrations significantly as well as dose-dependently reduced the PDE5 activity. The
results indicated that the components in CO hydrosol responsible for PDE5 inhibition were
primarily distributed in the water fraction. Therefore, subsequent chromatographic and
spectroscopic techniques were employed to isolate and identify (seven) compounds from
the CO hydrosol water fraction, followed by activity screening.
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Figure 4. Inhibition activity of PDE5 by CO leaf hydrosol ((A), EA fraction; (B), water fraction).
Statistical analysis using one-way ANOVA. Different letters indicate significant differences between
the different groups (p < 0.05).

When conducting PDE5 inhibition assays on the seven isolated compounds,
trans-phenyloxetan-3-ol and cis-phenyloxetan-3-ol exhibited significant inhibition activity,
with IC50 values of 4.37 µM and 3.40 µM, respectively. The IC50 values of the remaining
five compounds were all higher than 40 µM. The inhibition rates of trans-phenyloxetan-
3-ol at concentrations of 0.1, 0.5, 1, 10, and 20 µM were 11.5%, 26.1%, 36.7%, 58.4%, and
65.3%, respectively, and those of cis-phenyloxetan-3-ol at concentrations of 0.1, 0.5, 1, 5,
and 10 µM were 10.8%, 27.1%, 38.1%, 52.1%, and 61.9%, respectively, indicating that cis-
phenyloxetan-3-ol exhibits better inhibition of PDE5 activity (Figure 5). Epimedium, known
as a traditional herbal remedy for male enhancement, contains the active compound icariin,
which has been isolated and found to exhibit good inhibitory effects against PDE5, with an
IC50 value of approximately 5.9 µM [33]. However, the two active compounds we found
in CO hydrosol were both shown to have lower IC50 values than icariin. They may be the
most potent natural compounds published to date for PDE5 inhibition.
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2.4. ACE Inhibition Activity of CO Hydrosol

In vivo, angiotensin I is converted by ACE into the physiologically active angiotensin
II, which raises the blood pressure and induces vasoconstriction. Vasoconstriction not only
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impacts the erectile process but also contributes to long-term vascular wall damage due to
chronic hypertension [34]. As shown in Figure 6, both of the EA fraction and water fraction
of hydrosol presented a dose-dependent inhibition effect. The EA fraction exhibited better
inhibitory effects than the water fraction, and their IC50 values were 966.7 µg/mL and
1630.0 µg/mL. The results indicated that CO hydrosol exhibited a weaker inhibitory effect
on ACE.
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2.5. AChE Inhibition Activity of CO Hydrosol

AChE inhibitors can be used clinically as a treatment for Alzheimer’s disease be-
cause they can increase the concentration of acetylcholine in the brain, thereby enhancing
cholinergic neurotransmission [35]. Acetylcholine can also activate eNOS in endothelial
cells, influencing erectile function. As shown in Figure 7, the EA fraction exhibited AChE
inhibition rates of 9.1%, 27.1%, 57.5%, 68.8%, and 75.3% at concentrations of 400, 800, 1600,
2000, and 2400 µg/mL, respectively. The water fraction showed inhibition rates of 15.8%,
27.2%, 45.9%, 52.7%, and 62.0% at concentrations of 400, 800, 1600, 2000, and 2400 µg/mL,
respectively. Their IC50 values were 1342.8 µg/mL and 1671.1 µg/mL. The results indicated
that the EA fraction presented a better inhibition effect than the water fraction.
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2.6. ARG2 Inhibition Activity of CO Hydrosol

Arginase is an enzyme of the urea cycle that catalyzes the hydrolysis of L-arginine to L-
ornithine and urea. Two isoforms coexist, with type I predominantly expressed in the liver
and the type II arginase expressed throughout extrahepatic tissues [36]. Circulating ARG2
concentrations increase in clinical ED, associated with an increased risk of ED [37]. As
shown in Figure 8, the EA fraction exhibited ARG2 inhibition rates of 31.3%, 39.2%, 50.2%,
61.4%, and 71.4% at concentrations of 100, 200, 400, 800, and 1600 µg/mL, respectively. The
water fraction showed inhibition rates of 26.3%, 35.4%, 47.3%, 55.7%, 66.8%, and 73.1% at
concentrations of 100, 200, 400, 800, 1600, and 2400 µg/mL, respectively. Their IC50 values
were 382.0 µg/mL and 513.6 µg/mL. The inhibition effect of ARG2 is greater than that of
ACE and AChE, and the EA fraction exhibited better activity than the water fraction in all
enzymes except for PDE5.
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3. Materials and Methods
3.1. General Experimental Procedures

NMR experiments (1H, 13C, HSQC, HMBC, and COSY) were carried out on a Bruker
AVANCEIII 400 spectrometer (Bruker, Billerica, MA, USA) at 300 K using CD3OD or D2O
as the solvent. ESI-MS were obtained in the positive and negative ion modes on a Bruker
amaZon speed mass spectrometer (Bruker). Column chromatography was performed
over RP-18 silica gel (40–63 µm; Merck, Darmstadt, Germany). RP-HPLC separation
was conducted on an Agilent 1100 series system equipped with a COSMOSIL C18-AR-II
(4.6 mm I.D. × 250 mm, Nacalai Tesque Inc., San Diego, CA, USA), which was employed
with a MeOH/H2O solvent system. The mobile phase condition is as shown in Table 3.

Table 3. The mobile phase condition of RP-HPLC.

Retention (min) Flow (mL/min) MeOH (%) H2O (%)

0 1.0 1 99
6 1.0 1 99
10 1.0 15 85
18 1.0 18 82
40 1.0 60 40
41 1.0 100 0
45 1.0 100 0
46 1.0 1 99
50 1.0 1 99
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3.2. Plant Material

The leaves for essential oil and hydrosol extraction were collected from a batch of
15-year-old CO trees in June 2021 from Chuyunshan Nursery, Taichung City, Taiwan, and
the species was identified by Prof Sheng-Yang Wang, Department of Forestry, National
Chung Hsing University. A voucher specimen (C.J. Chen s. n., TCF) was deposited in the
herbarium of the same university. The leaves were washed and air-dried, then stored at
−20 ◦C until used.

3.3. Preparation of CO Leaf Essential Oil and Hydrosol

The hydrosol of CO leaves was prepared using the steam distillation method. Approx-
imately 30 kg of CO leaves was distilled for 8 h distillation time. Following distillation, the
steam containing essential oils and hydrosols was condensed and collected separately. The
yield of CO essential oil was 3.06 mL/kg. Experiments were conducted using the hydrosol
collected from the initial 20 L. Upon partitioning with ethyl acetate, we obtained 25.6 g of
the EA fraction, with a yield of 0.13% (w/v). The hydrosol water fraction was lyophilized
and yielded 885.6 mg, with a yield of 0.0044% (w/v).

3.4. Compounds of CO Hydrosol Water Fraction Identification

The lyophilization of the CO hydrosol water fraction (885.6 mg) was subject to RP-18
silica gel column chromatography by eluting with water followed by three concentrations
of methanol (30%, 60%, and 100%), which yielded three sub-fractions (A–C). The weights of
three sub-fractions were 436.8 mg, 174.6 mg, and 101.4 mg, respectively. The A sub-fraction
accounts for 49.3% of the total water fraction; therefore, it was analyzed by RP- HPLC, and
seven compounds (A1–A7) were purified.

trans-2-methyloxetan-3-ol (1) ESIMS m/z 89.6 [M + H]+; 1H NMR (in D2O): δ (ppm)
1.34 (3H, d, J = 6.8, 3 Hz), 3.73 (1H, dd, J = 12.0, 5.6 Hz), 3.82 (1H, dd, J = 12.0, 5.6 Hz), 4.11
(1H, m), 4.14 (1H, m).

cis-2-methyloxetan-3-ol (2): ESIMS m/z 89.1 [M + H]+; 1H NMR (CD3OD): δ (ppm)
1.18 (3H, d, J = 6.8, 3 Hz), 3.40 (1H, m), 3.53 (1H, dd, J = 11.2, 6.4 Hz), 3.64 (1H, dd, J = 11.2,
4.8 Hz), 3.75 (1H, m).

3-methoxy-4-hydroxyphenylglycol (3): ESIMS m/z 206.9 [M + Na]+; 1H NMR (CD3OD):
δ (ppm) 3.59 (2H, d, J = 6.0 Hz), 3.86 (3H, s), 4.59 (1H, t, J = 6.0 Hz), 6.75 (1H, d, J = 8.0 Hz),
6.79 (1H, dd, J = 8.0, 1.6 Hz), 6.96 (1H, d, J = 1.6 Hz).

cis-phenyloxetan-3-ol (4): ESIMS m/z 150.9 [M + H]+; 1H NMR (CD3OD): δ (ppm) 3.59
(1H, dd, J = 11.2, 6.8 Hz), 3.66 (1H, dd, J = 11.2, 3.6 Hz), 3.75 (1H, ddd, J = 6.8, 6.0, 3.6 Hz),
4.61 (1H, d, J = 6.0 Hz), 7.25 (1H, m), 7.33 (2H, m), 7.40 (2H, dd, J = 9.2, 2.0 Hz).

5-(2-hydroxypropan-2-yl)-2-methylcyclohex-3-ene-1,2-diol (5): ESIMS m/z 187.1 [M +
H]+; 1H NMR (CD3OD): δ (ppm) 1.16 (3H, s), 1.21 (3H, s), 1.25 (3H, s), 1.83 (2H, m), 2.34
(1H, m), 3.72 (1H, dd, J = 6.0, 2.0 Hz), 5.58 (1H, ddd, J = 10.4, 2.4, 1.6 Hz), 5.88 (1H, dd,
J = 10.4, 1.6 Hz).

trans-phenyloxetan-3-ol (6): ESIMS m/z 151.0 [M + H]+; 1H NMR (CD3OD): δ (ppm)
3.36 (1H, dd, J = 11.2, 6.4 Hz), 3.50 (1H, dd, J = 11.2, 4.4 Hz), 3.69 (1H, ddd, J = 6.4, 6.0,
4.4 Hz), 4.63 (1H, d, J = 6.0 Hz), 7.25 (1H, m), 7.33 (2H, m), 7.40 (2H, dd, J = 7.2, 2.0 Hz).

2-(2-hydroxyphenyl)oxetan-3-ol (7): ESIMS m/z 165.0559 [M-H]−; 1H NMR (CD3OD):
δ (ppm) 3.88 (1H, td, J = 4.4, 2.4 Hz), 4.10 (1H, ddd, J = 11.6, 4.8, 1.2 Hz), 4.21 (1H, dd,
J = 11.6, 2.4 Hz), 4.47 (1H, d, J = 4.4 Hz), 6.81 (1H, dd, J = 8.4, 0.8 Hz), 6.93 (1H, td, J = 7.6,
0.8 Hz), 7.18 (1H, td, J = 8.4, 1.6 Hz), 7.36 (1H, dd, J = 7.6, 1.6 Hz).

3.5. GC/MS Analysis

The chemical composition of CO essential oil or hydrosol ethyl acetate fraction was
analyzed by a Thermo TRACE GC Ultra gas chromatograph (Thermo Fisher Scientific,
Waltham, MA, USA) coupled with an ITQ900 mass spectrometer. An ITQ 900 mass spec-
trometer (Thermo Fisher Scientific, Waltham, MA, USA) was coupled with a DB-5MS
column, and the temperature program was as follows: 40 ◦C for 3 min, then increased
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to 3 ◦C/min to 180 ◦C, and then increased to 20 ◦C/min to 280 ◦C, held for 5 min. The
other parameters were injection temperature, 240 ◦C; ion source temperature, 200 ◦C; EI,
70 eV; carrier gas, He 1 mL/min; and mass scan range, 40–600 m/z. The volatile com-
pounds were identified by referring to the Wiley/NBS Registry of mass spectral databases
(V. 8.0, Hoboken, NJ, USA), National Institute of Standards and Technology (NIST) Ver. 2.0
GC/MS libraries, and the Kovats indices (KIs) were calculated for all volatile constituents
using a homologous series of n-alkanes C9–C24. The major components were identified by
co-injection with standards (wherever possible).

3.6. PDE5 Inhibition Assay

The PDE5 assay was determined by using a PDE5A1 assay kit (BPS Bioscience, San
Diego, CA, USA). The experiments were conducted following the manufacturer’s protocol.
Sildenafil (10 nM) was used as a positive control.

3.7. ACE Inhibition Assay

The ACE inhibition assay was performed via the LC-MS method as described pre-
viously with modifications [38]. Briefly, a 500 µL reaction mixture containing 400 µL of
6.25 mM hippuryl-L-histidyl-L-leucine in Tris buffer, 80 µL of rabbit lung ACE (25 U/mL),
16 µL of 50 mM Tris buffer (pH 7.4), and 4 µL of various concentration of test sample was
added to a 1.5 mL Eppendorf tube and incubated on a shaker at 37 ◦C for 2 h. Next, 500 µL
of 1M HCl was added to terminate the reaction. After filtration of the reaction mixture
using a 0.22 µm membrane filter, 2 µL was injected into LC-MS/MS for the analysis of the
hippuric acid content to calculate the ACE inhibition rate. The mobile phase consisted of
acetonitrile (A) and water (mixed with 0.1% formic acid, B) at a flow rate of 0.3 mL/min.
The initial mobile phase composition was 90% B, which was changed to 80% B at 5 min
and 100% B at 7 min, then maintained for 3 min and changed to 100% A at 11 min. The UV
detector was set at 254 nm. Captopril (20 nM) was used as a positive control.

3.8. AChE Inhibition Assay

The AChE inhibition assay was performed via the ELISA microplate reader method,
which was modified from the method described by Di Giovanni [39]. Briefly, a 300 µL
reaction mixture, containing 10 µL of 4.05 mM 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB),
20 µL of AChE (37 mU/mL), 227.3 µL of 100 mM phosphate buffer (pH 7.4), 2.7 µL of
various concentration of test sample, and 20 µL of substrate solution consisting of 3.375 mM
acetylthiocholine iodide (ATCI), was added into a 96-cell microplate. The absorbance of
reaction product was measured every 20 s for 3 min at 412 nm using a micro-plate reader
(Biotek Instruments, Winooski, VT, USA). Neostigmine methylsufate (1 µM) was used as a
positive control.

3.9. Arginase 2 Inhibition Assay

The ARG2 inhibition assay was conducted using the ELISA microplate reader method
as described previously with modifications [40]. Briefly, a 250 µL reaction mixture, contain-
ing 190 µL of 10 mM MnCl2 in 50 mM Tris-HCl buffer (pH 7.5), 50 µL of human recombinant
ARG2 (25 U/mL), 100 µL of 50 mM arginine (pH 9.7), and 10 µL of various concentrations
of test sample, was added to a 1.5 mL Eppendorf and incubated on a shaker at 37 ◦C
for 1 h. Next, 600 µL of H2SO4/H3PO4/H2O (1:3:7) was added to terminate the reaction.
Finally, 50 µL of α-isonitrosopropiophenone dissolved in alcohol (50 mg/mL) was added.
The reaction mixture was then incubated at 100 ◦C in the dark for 45 min. After cooling,
the mixture was centrifuged at 10,000× g for 10 min. Subsequently, the supernatant was
transferred to a 96-cell microplate in the dark, and the absorbance was measured at 550 nm
using a microplate reader (Biotek Instruments). Nω-hydroxy-nor-L-arginine (1 µM) was
used as a positive control.
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3.10. Statistical Analysis

Data were expressed as the mean ± SD of three independent experiments. Statistical
analysis was performed using GraphPad Prism 9.5 for Windows (GraphPad Software, La
Jolla, CA, USA). Statistical significance was scored by using one-way ANOVA followed
by Tukey’s test for multiple comparison. * p < 0.05, ** p < 0.01, and *** p < 0.001 were
considered statistically significant from sample treatment groups vs. the control group.

4. Conclusions

In our investigation, we undertook a thorough examination of CO hydrosol, revealing
a composition akin to that of essential oil, notably dominated by trans-cinnamaldehyde.
Within the highly polar (water soluble) fraction, our investigation isolated and identified
seven compounds. Among these, four (designated as compounds 1, 2, 4, and 6) were
discovered for the first time from natural sources, while 2-(2-hydroxyphenyl)oxetan-3-ol
(compound 7) emerged as a newly unearthed compound. Expanding upon our discoveries,
we observed that CO hydrosol demonstrated promising inhibitory activity against PDE5.
Particularly noteworthy were trans-phenyloxetan-3-ol (compound 4) and cis-phenyloxetan-
3-ol (compound 6), identified as novel PDE5 inhibitors. Their potency is reflected in lower
IC50 values compared to icariin, the currently recognized potent natural inhibitor. This
highlights their therapeutic potential.

Furthermore, while CO hydrosol exhibited only weak inhibitory effects against ACE,
AChE, and ARG2, our findings suggest its potential in auxiliary roles, influencing erectile
function through multiple physiological pathways. The C. osmophloeum hydrosol affects
erectile dysfunction by inhibiting several enzyme’s activities. It inhibits AChE to enhance
parasympathetic signaling, reduces ARG2 to preserve the eNOS co-substrate arginine,
inhibits ACE to decrease the production of angiotensin, and most importantly, significantly
inhibits PDE5 activity to promote smooth muscle relaxation (Figure 9). We also evaluated
the cytotoxicity of CO hydrosol and its compounds on HepB3 (Figure S20), and the results
indicated that both trans- and cis-phenyloxten-3-ol exhibited no cytotoxicity at 200 µM
in Hep3B cells. This multifaceted impact underscores the prospects of CO hydrosol as a
promising candidate for future development, possibly as a beverage or additive tailored to
enhance erectile function.
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Adding to this, recent research published in a leading pharmacology journal corrob-
orates the potential of CO hydrosol in modulating erectile function. A study conducted
by a team of researchers from a prominent university in Japan explored the effects of
CO hydrosol on erectile dysfunction in animal models. Their findings suggest that the
compounds present in CO hydrosol could enhance erectile function by improving blood
flow to the penile tissues and reducing oxidative stress, providing further support for its
potential as a natural remedy for erectile dysfunction.
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