Two Novel $15(10 \rightarrow 1)$ Abeomuurolane Sesquiterpenes from *Cosmos* sulphureus

by Jyh-Horng Wu^a), Yi-Fu Chang^b), Yu-Tang Tung^c), Minoru Tsuzuki^d), Akira Izuka^d), Sheng-Yang Wang^{*a}), and Yueh-Hsiung Kuo^{*b})^e)^f)

^a) Department of Forestry, National Chung-Hsing University, Taichung 402, Taiwan
^b) Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (phone: +886-2-33661671; fax: +886-2-23636359; e-mail: yhkuo@ntu.edu.tw)
^c) School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan ^d) Nihon Pharmaceutical University, Saitama, Japan

^e) Tsuzuki Institute for Traditional Medicine, College of Pharmacy, China Medical University, Taichung 404, Taiwan

^f) Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan

Two novel $15(10 \rightarrow 1)$ abeomuurolane sesquiterpenes, cosmosoic acid (1) and cosmosaldehyde (2), were isolated from the whole plant of *Cosmos sulfurous*. Their structures were established by a combination of 1D- and 2D-NMR spectroscopic techniques. Additionally, a chemical correlation between 1 and 2 was also established.

Introduction. – Cosmos sulphureus is also known as Sulfur Cosmos and Yellow Cosmos. Its native habitat is Brazil and Mexico, and this plant is used traditionally to treat malaria in Brazil [1]. However, to date, the chemical studies on C. sulphureus have not yet been published. Thus, it was considered worthy investigating its chemical components. In this study, we isolated and identified two novel $15(10 \rightarrow 1)$ abeomuurolane-type¹) sesquiterpenes which are named cosmosoic acid¹) (1) and cosmosalde-hyde¹) (2).

Results and Discussion. – Cosmosoic acid (1) was obtained as a colorless oil. The HR-EI-MS of compound 1 showed a molecular-ion peak at m/z 250.1566 (M^+), which corresponds to the molecular formula $C_{15}H_{22}O_3$, and indicated the presence of five degrees of unsaturation in the molecule. The IR spectrum revealed the presence of an α,β -unsaturated COOH and a saturated cyclohexanone moiety, characterized by absorptions at $\tilde{\nu}_{max}$ 3200–2500, 1715, 1701, 1635, and 939 cm⁻¹, and an UV maximum at

¹⁾ Trivial atom numbering according to IUPAC; for systematic names, see Exper. Part.

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

218 nm. The ¹H-NMR spectrum of **1** (*Table*) showed one Me group at $\delta(H)$ 1.29 (s, Me(15)), attached to a tertiary C-atom, and two Me d at $\delta(H) 0.90 (2d, J=6.7 \text{ Hz})$ Me(12), Me(13)), characteristic of an i-Pr group. A d at $\delta(H)$ 6.98 (d, J = 5.2 Hz, H-C(5)) suggested the presence of a trisubstituted C=C bond, conjugated with a COOH functionality [2]. Analysis of the ¹³C-NMR spectrum (Table) with the aid of DEPT and HSQC experiments, revealed a C=O group at δ (C) 212.2 (s, C(10)), a C=C bond at $\delta(C)$ 132.9 (s, C(4)) and 151.4 (d, C(5)), a conjugated COOH group at $\delta(C)$ 171.0 (s, C(14)), an i-Pr group at δ (C) 32.8 (d, C(11)), 21.9 (q, C(12)), and 19.8 (q, C(13)), a quaternary C-atom at $\delta(C)$ 59.4 (s, C(1)), a Me group at $\delta(C)$ 25.0 (q, C(15)), four CH₂ groups at δ (C) 39.4 (*t*, C(2)), 34.9 (*t*, C(9)), 27.0 (*t*, C(8)), and 22.6 (*t*, C(3)), and two CH groups at $\delta(C)$ 55.8 (d, C(7)) and 52.8 (d, C(6)). Since three (COOH, C=O, and C=C) out of five degrees of unsaturation deduced from the molecular formula $C_{15}H_{22}O_3$ were accounted for, compound 1 was inferred to be a bicyclic sesquiterpenoid. The constitutional formula of compound 1 was established from HMBC data, and the key starting points for the interpretation of the ¹³C,¹H correlations were those of the three Me, the C=O, and the COOH groups, as depicted in the Figure. Two- or three-bond couplings from C(14) to H-C(3) and H-C(5), from C(5) to H-C(3), H-C(6), and H-C(7), from C(10) to H-C(2), H-C(6), H-C(9), and Me(15), from C(15) to H-C(6), and from C(11) to H-C(8) and H-C(6) allowed to establish the structure of cosmosoic acid as 1. The C-atom skeleton of 1 is different from cadinane (Me groups at C(4) and C(10)) [3], gorgonane (Me groups at C(4) and

Table. ¹H- (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) Data of Compounds **1** and **2**. δ in ppm, J in Hz.

	1		2	
	$\delta(H)$	$\delta(C)^a)$	$\delta(H)$	$\delta(C)^a)$
C(1)		59.4 (s)		59.8 (s)
CH ₂ (2)	$2.43 - 2.49 (m, H_a),$	39.4(t)	$2.38-2.46 (m, H_a),$	39.2(t)
	$2.76 - 2.82 (m, H_{\beta})$		$2.73 - 2.79 (m, H_{\beta})$	
CH ₂ (3)	$2.76 - 2.82 (m, H_a),$	22.6(t)	$2.68 - 2.74 (m, H_a),$	20.1(t)
	$2.54 - 2.60 (m, H_{\beta})$		$2.38 - 2.46 (m, H_{\beta})$	
C(4)		132.9 (s)		143.3 (s)
CH(5)	6.98 (d, J = 5.2)	151.4(d)	6.62 (d, J = 5.6)	158.1(d)
CH(6)	2.39 (dd, J = 8.0, 5.2)	52.8(d)	2.52 (dd, J = 8.8, 5.6)	53.3 (d)
CH(7)	1.74 - 1.82 (m)	55.8(d)	1.76 - 1.89 (m)	55.5 (d)
CH ₂ (8)	$1.79 - 1.85 (m, H_a),$	27.0(t)	$1.76 - 1.89 (m, H_{\alpha}),$	27.2(t)
	$1.34 - 1.42 (m, H_{\beta})$		$1.36 - 1.45 (m, H_{\beta})$	
CH ₂ (9)	$1.34 - 1.42 (m, H_a),$	34.9 (<i>t</i>)	$1.36 - 1.45 (m, H_{\alpha}),$	35.4 (t)
	$2.08 - 2.14 (m, H_{\beta})$		$2.16 - 2.22 (m, H_{\beta})$	
C(10)		212.2(s)		211.2(s)
CH(11)	1.58 (sept., J = 6.7)	32.8(d)	1.60 (sept., J = 6.4)	32.7 (d)
Me(12)	0.90 (d, J = 6.7)	21.9(q)	0.93 (d, J = 6.4)	22.4(q)
Me(13)	0.90 (d, J = 6.7)	19.8(q)	0.93 (d, J = 6.4)	19.9 (q)
C(14)		171.0(s)	9.33 (s)	191.9 (d)
Me(15)	1.29 (s)	25.0(q)	1.32 (s)	25.4 (q)
^a) Multiplici	ities inferred from the DEPT	and HMOC exper	iments.	

Figure. Key HMBCs $(C \rightarrow H)$ and NOESY $(H \leftrightarrow H)$ correlations of compound 1

C(10) [4], and nardosinane (Me groups at C(4) and C(5)) [5]. Compound 1 was named cosmosane, according to its isolation from the genus *Cosmos*.

The relative configuration of **1** was determined mainly by NOESY experiments (*Fig.*). H–C(6) resonated as a double *d* at δ (H) 2.39 and showed a diaxial coupling with H–C(7) (J=8.0 Hz). Accordingly, the *trans* diaxial coupling H–C(6)/H–C(7) permitted us to establish a β -configuration for H–C(6) and an α -configuration for H–C(7). In addition, H–C(6) also showed a NOESY cross-peak with the Me(15) H-atoms (δ (H) 1.29). This NOESY correlation suggested that H–C(6) and Me(15) have the same orientation, *i.e.*, β -configuration, as shown in the *Figure*. Furthermore, the *d* of H–C(5) (J=5.2 Hz) unambiguously confirmed the muurolene skeleton of **1** [3].

Cosmosaldehyde (2) was also obtained as a colorless oil. Its HR-EI-MS showed a molecular-ion peak at m/z 234.1624 (M^+), which corresponds to the molecular formula $C_{15}H_{22}O_2$. The IR spectrum of 2 indicated the presence of an α,β -unsaturated CHO group (2720 and 1689 cm⁻¹) and of a cyclohexanone unit (1714 cm⁻¹). The ¹H-NMR data of 2 were similar to those of 1, except for the presence of a CHO group (δ (H) 9.33) instead of a COOH group (*Table*). This CHO group was positioned at C(14) because the C=O C-atom showed HMBCs with CH₂(3) and H–C(5) as well as a UV absorption at λ_{max} 232 nm. In addition, the deshielding of H–C(5) (δ (H) 6.62 (d, J = 5.6 Hz)) and C(5) (δ (C) 158.1) is consistent with a β -position in a conjugated enal. The structure of compound 2 was further elucidated by 1D- and 2D-NMR techniques, and the results suggested that cosmosaldehyde possesses structure 2. Furthermore, compound 2 was oxidized by *Jones* reagent to give a product which was identified as cosmosoic acid (1). Therefore, the structure of compound 2 was assigned unambiguously as shown.

The biotransformation of the two novel sesquiterpenes 1 and 2 presumably starts from $(1\alpha,10\alpha)$ -cadin-4-ene-1,10-diol (3) via the pathway sketched in the Scheme. Under acidic conditions, compound 3 should be converted to $15(10 \rightarrow 1)$ abeomuurol-

Scheme. Possible Biosynthetic Pathway to 1 and 2

4-en-10-one (4), and then this compound is oxidized to yield compound 2 and then compound 1 by further oxidation.

This work was financially supported by a research grant from the China Medical University (CMU98-CT-01) and in part by *Taiwan Department of Health Clinical Trial and Research Center of Excellence.*

Experimental Part

General. Column chromatography (CC): silica gel 60 (SiO₂; 70–230 mesh; Merck). HPLC: LDC-Analytical-III; Phenomenex-00G-4274-N0-Luna-Si (5 µm, 10 × 250 mm) semiprep. column. Optical rotations: Jasco-DIP-1000 digital polarimeter. IR Spectra: Nicolet-MAGNA-IR-550 spectrophotometer, series II; KBr pellets; $\tilde{\nu}$ in cm⁻¹. UV Spectra: Helios-Beta-UV/VIS spectrometer; λ_{max} (log ε) in nm. 1Dand 2D-NMR Spectra: Bruker-DMX-500SB spectrometer; in CDCl₃ at 500 (¹H) and 125 MHz (¹³C); δ in ppm rel. to Me₄Si as internal standard, J in Hz. MS: Finnigan-TSQ-46C and Jeol-SX-102A mass spectrometers; in m/z (rel.%).

Plant Material. The whole plant of *C. sulphureus* was collected from Pin-Ton County (Taiwan). The plant material was identified by Prof. *Shang-Tzen Chang* of the School of Forestry and Resource Conservation, National Taiwan University, and a voucher specimen was deposited with the Herbarium of the School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan.

Extraction and Isolation. The air-dried whole plant (4.7 kg) of *C. sulphureus* was extracted with MeOH (3×201) at r.t. for 2 weeks totally. The extract was filtered under vacuum and concentrated to a residue (320 g). The residue was suspended in H₂O and extracted successively with AcOEt and BuOH to yield AcOEt- (141 g), BuOH- (19 g), and H₂O-soluble (56 g) fractions. The AcOEt-soluble fraction was repeatedly subjected to CC (SiO₂, hexane/AcOEt 0–100% and AcOEt/MeOH 0–30%) to yield several subfractions. A subfraction obtained with hexane/AcOEt 1:1 was subjected to normal-phase HPLC: **1** and **2**.

 $\begin{array}{l} Cosmosoic \ Acid \ (= rel-(4aR,8R,8aS)-3,4,4a,5,6,7,8,8a-Octahydro-4a-methyl-8-(1-methylethyl)-5-oxonaphthalene-2-carboxylic \ Acid; \ 1): \ Colorless \ oil. \ [a]_{20}^{20} = + 30.6 \ (c = 0.04, \ MeOH). \ UV \ (MeOH): \ 218 \ (4.21). \ IR: \ 3200-2500, \ 1715, \ 1701, \ 1635, \ 1281, \ 939. \ ^1H- \ and \ ^{13}C-NMR \ (CDCl_3): \ Table. \ EI-MS: \ 250 \ (40, \ M^+), \ 207 \ (100), \ 189 \ (63), \ 167 \ (81). \ HR-EI-MS: \ 250.1566 \ (M^+, \ C_{15}H_{22}O_{3}^+; \ calc. \ 250.1569). \end{array}$

Cosmosaldehyde (= rel-(4aR,8R,8aS)-3,4,4a,5,6,7,8,8a-Octahydro-4a-methyl-5-oxo-8-(1-methylethyl)naphthalene-2-carboxaldehyde; **2**): Colorless oil. $[a]_{15}^{15} = +31.7$ (c = 0.03, MeOH). UV (MeOH): 232 (4.04). IR: 2720, 1714, 1689, 1642, 1253, 1175, 946. ¹H- and ¹³C-NMR (CDCl₃): Table. EI-MS: 234 (19, M^+), 191 (100), 163 (41), 151 (52). HR-EI-MS: 234.1624 (M^+ , $C_{15}H_{22}O_2^+$; calc. 234.1620).

REFERENCES

[1] A. S. Botsaris, J. Ethnobiol. Ethnomed. 2007, 3, 1.

[2] R. J. Capon, M. Miller, F. Rooney, J. Nat. Prod. 2002, 63, 821.

[3] Y.-H. Kuo, C.-H. Chen, S.-C. Chien, Y.-L. Lin, J. Nat. Prod. 2000, 65, 25.

[4] T. Hackl, W. A. König, H. Muhle, Phytochemistry 2004, 65, 2261.

[5] G. Vidari, Z. Che, L. Garlaschelli, Tetrahedron Lett. 1998, 39, 6073.

Received August 4, 2009