INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted for any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2013 subscription price: US$2,395 (Print, ISSN# 1934-578X); US$2,395 (Web edition, ISSN# 1555-9475); US$2,795 (Print + single site online); US$5,955 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
The Composition, Anti-mildew and Anti-wood-decay Fungal Activities of the Leaf and Fruit Oils of *Juniperus formosana* from Taiwan

Yu-Chang Su, a Kuan-Ping Hsu, b Eugene I-Chen Wang b and Chen-Lung Hob*

aDepartment of Forestry, National Chung Hsing University, 230 Kuang Kuang Rd., Taichung, Taiwan 402
bDivision of Wood Cellulose, Taiwan Forestry Research Institute, 53, Nanhai Rd., Taipei, Taiwan 100

*chenglung@tfri.gov.tw

Received: April 5th, 2013; Accepted: May 28th, 2013

In this study, anti-mildew and anti-wood-decay fungal activities of the leaf and fruits essential oil and its constituents from *Juniperus formosana* were evaluated in vitro against seven mildew fungi and four wood decay fungi, respectively. The main compounds responsible for the anti-mildew and anti-wood-decay fungal activities were also identified. The essential oil from the fresh leaves and fruits of *J. formosana* were isolated using hydrodistillation in a Cleverning-type apparatus, and characterized by GC–FID and GC–MS, respectively. The leaf oil mainly consisted of α-adams bornyl acetate (5.2%), limonene (4.3%), and myrcene (4.1%), and α-pinene (26.1%), β-myrcene (32.4%), α-thujene (5.9%) and limonene (5.9%). Comparing the anti-mildew and anti-wood-decay fungal activities of the oils suggested that the leaf oil was the most effective. For the anti-mildew and anti-wood-decay fungal activities of the leaf oil, the active source compounds were determined to be α-cadinol and elemol.

Keywords: *Juniperus formosana*, Essential oil, Anti-mildew activity, Anti-wood-decay fungal activity, α-Cadinol, Elemol.

Juniperus formosana Hayata (Cupressaceae) is a large tree mainly distributed in Taiwan, and China [1]. However, only three references were found regarding the chemical compositions of this species from China [2-4]. In Taiwan, there is no report of the essential oil composition and bioactivities for *J. formosana*. Therefore, in this study, the essential oil from the leaves and fruits was first isolated using hydrodistillation, and then analyzed. In addition, the climate of Taiwan is warm and humid, and thus conducive to the growth of mildew and wood decay fungi. Mildew growth causes problems in the preservation of cultivated crops as well as inducing allergies, asthma, bronchitis, onychomycosis, cerebral infections, pneumonia, peritonitis, and immune-deficiency syndrome [5]. The wood decay fungi can easily cause damage to wooden products. Therefore, we also applied the essential oils to seven strains of mold fungi and four of wood decay fungi to examine their interference efficacies, respectively. The second part of the study examined the anti-mildew and anti-wood-decay fungal activities of the leaf and fruit oils. The purpose of this study was to establish a chemical basis for the effective multipurpose utilization of the species.

Hydrodistillation of *J. formosana* leaves and fruits produced yellow-colored oils with yields (v/w), on a moisture free basis, of 1.51 ± 0.06 and 1.86 ± 0.05, v/w, respectively. All compounds are listed in order of their elution from the DB-5 column (Table 1). A total of 49 compounds were identified from the hydrodistilled leaf oil of *J. formosana*. Monoterpene hydrocarbons were predominant (69.2%), followed by oxygenated sesquiterpenes (20.5%), sesquiterpene hydrocarbons (5.4%), oxygenated monoterpenes (3.6%), and non-terpenoids (1.2%). Of the monoterpene hydrocarbons, α-pinene (41.0%), limonene (11.5%) and β-myrcene (5.8%) were the major compounds. α-Cadinol (11.0%) and elemol (6.3%) were the chief sesquiterpene hydrocarbons. In *J. formosana* leaf oil, Yu et al. [2] found 55 compounds, mainly α-pinene (9.6%), bornyl acetate (5.2%), limonene (4.3%), and myrcene (4.1%). Adams et al. [3] found 70 compounds, mainly α-pinene (47.7%), myrcene (7.2%), limonene (4.0%), β-pinene (2.9%), γ-cadinene (2.4%), and germacrene D (2.3%). Our results differed from the above papers with α-pinene, limonene, α-cadinol, elemol, and β-myrcene as the major compounds. This is the first presentation of these compounds in *J. formosana* leaf oil.

Twenty-five components were identified from the fruit oil. Among them, monoterpane hydrocarbons were the most dominant (93.4%), followed by sesquiterpene hydrocarbons (2.5%), oxygenated sesquiterpenes (2.2%), and oxygenated monoterpenes (1.9%). α-Pinene (40.9%), β-myrcene (32.4%), α-thujene (5.9%) and limonene (5.9%) were the major monoterpane hydrocarbons. In *J. formosana* fruit oil, Yu and Xie [4] found 47 compounds mainly myrcene (27.1%), α-pinene (26.1%), γ-terpinene (10.7%), and limonene (6.0%). Our results differed from the above paper with α-pinene, β-myrcene, α-thujene and limonene as the main compounds. This is the first presentation of these compounds for *J. formosana* fruit oil.

The leaf and fruit oils of *J. formosana* were tested against seven mildew fungi (*Aspergillus clavatus* (A. c.), *A. niger* (A. n.), *Chaetomium globosum* (Ch. g.), *Cladosporium cladosporioides* (Cl. c.), *Myrothecium verrucaria* (M. v.), *Penicillium citrinum* (P. c.), and *Trichoderma viride* (T. v.). The antifungal indexes demonstrated clearly that the leaf oil had antifungal activities superior to those of the fruit oil (Table 1). Among the fungi tested, the leaf oil was totally inhibitory of mycelial growth of *A. clavatus*, *Cl. cladosporioides*, *Ch. globosum*, and *M. verrucaria* at a 1 mg/mL concentration. The leaf oil was superior to the anti-mildew fungal activities of the essential oils from *Eucalyptus urophylla*, *E. grandis*, *E. camaldulensis*, *E. citriodora* [5], *Lithsea cubeba* [6], *L. coreana* [7], and *Neolitsea parvigemma* [8]. The results verified that *J. formosana* leaf oil has notable antifungal activities.

However, to ascertain the source compounds responsible for *J. formosana* antifungal activities, the main components were...
individually tested for their antifungal activities (Fig. 2). As for α-pinene, β-myrcene and limonene, very low levels of activity were found against the seven mold fungi; none of the antifungal indices exceeded 30%. However, the sesquiterpenoids, elemol and α-cadinol exhibited better activities. Elemol and α-cadinol exhibited significant activity for suppressing microbial growth [8,10].

Previous studies support the contention that these compounds have significant activity for suppressing microbial growth [8,10].

This study also tested the anti-wood-decay fungal activities of the major components of J. formosana leaf oil to ascertain its source compounds. Results indicated that the anti-wood-decay fungal activities were due to α-cadinol and elemol. At a concentration of 50 μg/mL, α-cadinol and elemol showed total growth inhibition.
Experimental

The leaf essential oil of *Juniperus formosana* was isolated from fresh leaves and fruits of the species. The essential oils of the leaves and fruits (1 kg) were hydrodistilled for 3 h using a Clevenger-type apparatus. After distillation, the volume of oils obtained was measured, and the essential oils were stored in glass containers, hermetically sealed with rubber lids, covered with aluminum foil to protect the contents from light, and kept refrigerated at < 4°C until used. The oil yields and all test data are the average of triplicate analyses.

Essential oil analysis: A Hewlett-Packard HP 6890 gas chromatograph equipped with a DB-5 fused silica capillary column (30 m x 0.25 mm x 0.25 μm film thickness, J&W Scientific) and a FID detector was used for the quantitative determination of oil components. Oven temperature was programmed as follows: 50°C for 2 min, rising to 250°C at 5°C/min. Injector temperature: 270°C. Carrier gas: He with a flow rate of 1 mL/min. Detector temperature: 250°C, split ratio: 1:10. Diluted samples (1.0 μL, 1/100, v/v, in ethyl acetate) were injected manually in the split mode. Identification of the oil components was based on their retention indices and mass spectra, obtained from GC/MS analysis on a Hewlett-Packard HP 6890/HP973 equipped with a DB-5 fused silica capillary column (30 m x 0.25 mm x 0.25 μm film thickness, J&W Scientific). The GC analysis parameters listed above and the MS were obtained (full scan mode: scan time: 0.3 s, mass range was m/z 23-300) in the EI mode at 70 eV. All data were the average of triplicate analyses.

Component identification: Identification of the leaf essential oil constituents was based on comparisons of retention index (RI) [6], retention times (RT), and mass spectra with those obtained from authentic standards and/or the NIST and Wiley libraries spectra, and literature [9,18].

Antifungal assays: The method of Su et al. [5] was adopted. Mold and wood decay fungi were obtained from the Culture Collection and Research Center of the Food Industry Research and Development Institute, Hsinchu City, Taiwan. References of ASTM G21, JIS Z 2911 and AATCC test method 30 were consulted for the mold fungal strains; 7 strains {A. clavatus (ATCC 1007), A. niger (ATCC 6275), *Ch. globosum* (ATCC 6205), *Cl. cladosporioides* (ATCC 13276), *M. verrucaria* (ATCC 9095), *P. citrinum* (ATCC 9849) and *T. viride* (ATCC8678)} were tested. The wood decay fungi used were *T. versicolor* (BCRC 35253), *Phae. chrysosporium* (BCRC 36200), *Phae. schweinitzii* (BCRC 35365) and *L. sulphureus* (BCRC 35305). Antifungal assays were carried out in triplicate and data were averaged. Different concentrations of the essential oils (12.5-1000 μg/mL) were added to sterilized potato dextrose agar (PDA). The test plates were incubated at 27°C. When the mycelium of fungi reached the edge of the control plate, the antifungal index was calculated as follows:

\[
\text{Anti-fungal index (\%) = (1- Da/Db) X 100}
\]

where Da is the diameter of the growth zone in the control dish (cm) and Db is the diameter of the growth zone in the control dish (cm).

Table 2: Anti-wood-decay fungal indices of leaf and fruit essential oils of *J. formosana*.

<table>
<thead>
<tr>
<th>Essential oil</th>
<th>Dosage (μg/mL)</th>
<th>Anti-fungal index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trametes versicolor</td>
<td>Phaeo. chrysosporium</td>
</tr>
<tr>
<td>Leaf</td>
<td>12.5</td>
<td>89 ± 3.3</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>100 ± 0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>100 ± 0</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>100 ± 0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100 ± 0</td>
</tr>
<tr>
<td>Fruit</td>
<td>12.5</td>
<td>0 ± 0</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0 ± 0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0 ± 0</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0 ± 0</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>25 ± 3.3</td>
</tr>
</tbody>
</table>

References

[17] Su YC, Ho CL. (2013) Composition and two activities of the leaf essential oil of Litsea acuminata (Blume) Kurata from Taiwan. Records of Natural Products, 7, 27-34.

In vitro Anti-diabetic Activity of Sclerocarya birrea and Ziziphus mucronata
Nuno M.H. Da Costa Mousinho, Jacob J. van Tonder and Vanessa Steenkamp 1279

Secondary Metabolites from the Fungus Emericella nidulans
Amer H. Tarawneh, Francisco León, Mohamed M. Radwan, Luiz H. Rosa and Stephen J. Cutler 1285

A New Glucuronolactone Glycoside Phoenixoside B from the Seeds of Phoenix dactylifera
Sumbul Azmat, Rehana Ifzal, Faryal Vali Mohammad, Viqar Uddin Ahmad and Aqib Zahoor 1289

Cancer-Suppressive Potential of Extracts of Endemic Plant Helichrysum zivojinii: Effects on Cell Migration, Invasion and Angiogenesis
Ivana Z. Matić, Ivana Aljančić, Vlatka Vajs, Milka Jadranin, Nevenka Gligorijević and Zorica D. Juranić 1291

Analysis of Volatile Components, Fatty Acids, and Phytosterols of Abies koreana growing in Poland
Anna Wajs-Bonikowska, Karol Olejnik, Radosław Bonikowski and Piotr Banaszczak 1297

Cytotoxic Effects of Air Freshener Biocides in Lung Epithelial Cells
Jung-Taek Kwon, Mimi Lee, Gun-Back Seo, Hyun-Mi Kim, Ilseob Shim, Doo-Hee Lee, Taksoo Kim, Jung Kwan Seo, Pilje Kim and Kyunghee Choi 1301

GC/GC-MS Analysis, Isolation and Identification of Bioactive Essential Oil Components from the Bhutanese Medicinal Plant, Pleurospermum amabile
Phurpa Wangchuk, Paul A. Keller, Stephen G. Pyne, Malai Taweechotipatr and Sumalee Kamchonwongpaisan 1305

Antibacterial Activity of the Essential Oil of Heracleum sibiricum
Dragoljub L. Miladinović, Budimir B. Ilić, Tatjana M. Mihajilov-Krstev, Dejan M. Nikolić, Olga G. Cvetković, Marija S. Marković and Ljiljana C. Miladinović 1309

Assessment of the Chemical Composition and in vitro Antimicrobial Potential of Extracts of the Liverwort Scapania aspera
Danka R. Bukviciki, Amit K. Tyagi, Davide G. Gottardi, Milan M. Veljic, Snezana M. Jankovic, Maria E. Guerzoni and Petar D. Marin 1313

Essential Oils of Alpinia rafflesiana and Their Antimicrobial Activities
Shariha Jusoh, Hasnah Mohd. Sirat and Farediah Ahmad 1317

Chemical Composition and Synergistic Antioxidant Activities of Essential Oils from Atractylodes macrocephala and Astragalus membranaceus
Jinkui Li, Feng Li, Yan Xu, Wenjian Yang, Lili Qu, Qian Xiang, Cong Liu and Dapeng Li 1321

Chemical Analysis and Antioxidant Activity of the Essential Oils of Three Piperaceae Species Growing in the Central Region of Cuba
Elisa Jorge Rodríguez, Yanelis Saucedo-Hernández, Yvan Vander Heyden, Ernesto F. Simó-Alfonso, Guillermo Ramis-Ramos, María Jesús Lerma-García, Urbano Monteagudo, Luis Bravo, Mildred Medinilla, Yuriam de Armas and José Manuel Herrero-Martínez 1325

The Composition, Anti-mildew and Anti-wood-decay Fungal Activities of the Leaf and Fruit Oils of Juniperus formosana from Taiwan
Yu-Chang Su, Kuan-Ping Hsu, Eugene I-Chen Wang and Chen-Lung Ho 1329

Meeting/Report
Meeting Report: First National Meeting on Aloe, April 20-21, 2013, Isernia, Italy
New Perspectives in Aloe Research: from Basic Science to Clinical Application
Raffaele Capasso, Massimiliano Laudato and Francesca Borrelli 1333

Review/Account
Alkaloids of the South African Amaryllidaceae: a Review
Jerald J. Nair, Jaume Bastida, Carles Codina, Francesc Viladomat and Johannes van Staden 1335
Original Paper

Alternate Biosynthesis of Valerenadiene and Related Sesquiterpenes
Shashikumar K. Paknikar, Shahuraj H. Kadam, April L. Ehrlich and Robert B. Bates

A Facile Synthesis of (±)-Helianuol-D
Tao Zhang, Liang-Zhu Huang, You-Qiang Li, Yimg-Meng Xu and Zhen-Ting Du

A New Bioactive Diterpene Glycoside from Molinia retusa from the Madagascar Dry Forest
Alexander L. Eaton, Liva Harinantenaina, Peggy J. Brodie, Maria B. Cassera, Jessica D. Bowman, Martin W. Callmender, Richard Randrianarivo, Roland Rakotondrajaona, Etienne Rakotobe, Vincent E. Rasamison and David G. I. Kingston

Nitric Oxide and Tumor Necrosis factor-alpha Inhibitory Substances from the Rhizomes of Kaempferia marginata
Kanidta Kaewkroek, Chatchai Wattanapiromsakul, Palangpon Kongsaeree and Supinya Tewtrakul

Bisembranoids from the Marine Sponge Petrosia nigricans
Nguyen Xuan Nhiem, Ngo Van Quang, Chau Van Minh, Dan Thi Thuy Hang, Hoang Le Tuan Anh, Bui Huu Tai, Pham Hai Yen, Nguyen Thi Hoai, Do Cong Thothing and Phan Van Kiem

Isolation of Cycloeucalenol from Boophone disticha and Evaluation of its Cytotoxicity
Emmanuel Adekanmi Adewusi, Paul Steenkamp, Gerda Fouche and Vanessa Steenkamp

Chemical Constituents from an Endophytic Fungus Chaetomium globosum
Chun-Yan Zhang, Xiao Ji, Xuan Gui and Bao-Kang Huang

Determination of C-23 Configuration in (20R)-23-Hydroxycholestane Side Chain of Steroid Compounds by 1H and 13C NMR Spectroscopy
Alla A. Kicha, Anatoly I. Kalinovsky, Alexander S. Antonov, Oleg S. Radchenko, Natalia V. Ivanchina, Timofey V. Malyarenko, Alexander M. Savechenko and Valentin A. Stonik

Oxasetin from Lophiostoma sp. of the Baltic Sea: Identification, in silico Binding Mode Prediction and Antibacterial Evaluation against Fish Pathogenic Bacteria
Muftah Ali M. Shushni, Faizul Azam and Ulrike Lindequist

Chemical Constituents from the Fruit Body of Chlorophyllum molybdites
Zushang Su, Ping Wang, Wei Yuan, and Shiyou Li

Pulchranins B and C, New Acyclic Guanidine Alkaloids from the Far-Eastern Marine Sponge Monanchora pulchra

Cloning and Characterization of a cDNA Encoding Calcium/Calmodulin-dependent Glutamate Decarboxylase from Scutellaria baicalensis
Yeon Bok Kim, Md Romij Uddin, Do Yeon Kwon, Sun-Ju Kim, Chanhui Lee and Sang Un Park

Biflavonoids, Main Constituents from Garcinia bakeriana Leaves
Ahmed Al-Shagardi, Adonis Bello Alarcón, Osmany Cuesta-Rubio, Anna Lisa Piccinelli and Luca Rastrelli

Analysis of Flavonoids and Iridoids in Vitex negundo by HPLC-PDA and Method Validation
Tsukasa Iwashina, Minoru N. Tamura, Yoshinori Murakami and Junichi Nitahara

Chromatographic Analysis of Flavonoids and Iridoids in the Leaves of Triantha japonica and Tofieldia nuda
Antonio J. León-González, Miguel López-Lázaro, José L. Espartero and Carmen Martín-Cordero

Cytotoxic Activity of Dihydrochalcones Isolated from Corema album Leaves against HT-29 Colon Cancer Cells
Antonio J. León-González, Miguel López-Lázaro, José L. Espartero and Carmen Martín-Cordero

Immunomodulatory Activities of α-Mangostin on Peripheral Blood Mononuclear Cells
Pimolkan Kasemwattanaroj, Primchaneen Mongkamdi, Kovit Pattapanayatas, Supachoke Mangmool, Ekkarat Rodpai, Jutima Sumer, Julaporn Konlata and Kasama Sukapirom

Biphenyl Derivatives from Garcinia schomburgkiana and the Cytotoxicity of the Isolated Compounds
Chihiro Ito, Takuya Matsui, Eri Noda, Nijiri Rangunrungsi and Masataka Itoigawa

Anticarcinogenic Effect and Carcinogenic Potential of the Dietary Phenolic Acid: o-Coumaric Acid
Aaltalin Sen, Pelin Atmaca, Gulsam Terzioglu and Sevki Arslan

Bioproduction and Optimization of Rosmarinic Acid Production in Solenostemon scutellarioides through Media Manipulation and Conservation of High Yielding Clone via Encapsulation
Ranabir Sahu, Saikat Dewanjee and Moumita Gangopadhyay

Continued inside backcover