Flavokawain B, a novel chalcone from *Alpinia pricei* Hayata with potent apoptotic activity: Involvement of ROS and GADD153 upstream of mitochondria-dependent apoptosis in HCT116 cells

Yu-Feng Kuo a, Ying-Zhen Su a, Yen-Hsueh Tseng b, Sheng-Yang Wang b, Hsi-Ming Wang a, Pin Ju Chueh a,⁎

a Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China

b Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China

A B S T R A C T

Flavonoids synthesized from chalcone precursors in plants have been shown to possess cytotoxic activities with therapeutic potential. We have isolated the novel chalcone flavokawain B from *Alpinia pricei* Hayata, a plant native to Taiwan that is used in food and traditional Chinese medicine. Here, we report for the first time that flavokawain B significantly inhibits the growth of colon cancer cells and provide novel insight into the molecular mechanisms that underlie its apoptotic activity. Flavokawain B exerts its apoptotic action through ROS generation and GADD153 up-regulation, which lead to mitochondria-dependent apoptosis characterized by release of cytochrome c and translocation of Bak. The up-regulation of GADD153 in flavokawain B-treated HCT116 cells is associated with mitochondrial dysfunction and altered expression of Bcl-2 family members. Moreover, pretreatment with the ROS scavenger N-acetylcysteine abolishes flavokawain B-induced ROS generation, GADD153 up-regulation, and apoptosis. Similarly, RNAi-mediated gene silencing reduced flavokawain B-enhanced expression of GADD153 and apoptotic Bim, leading to diminished apoptosis. Interestingly, flavokawain B provokes G2/M accumulation as well as autophagy, in addition to apoptosis, suggesting that multiple pathways are activated in flavokawain B-mediated anticancer activity. Taken together, our data provide evidence for a molecular mechanism to explain the apoptotic activity of *Alpinia* plants, showing that flavokawain B acts through ROS generation and GADD153 up-regulation to regulate the expression of Bcl-2 family members, thereby inducing mitochondrial dysfunction and apoptosis in HCT116 cells.

© 2010 Elsevier Inc. All rights reserved.
GADD153/CHOP (growth arrest and DNA damage-inducible gene 153). This member of the CCAAT/enhancer-binding protein family of transcription factors has an essential role in regulating apoptosis [21–23] although, to date, few studies have described the relationship between GADD153 elevation and induction of apoptosis in cancer cells treated with flavonoids [24–27]. These converging signaling pathways reveal a significant role for GADD153 in regulating the apoptotic response to antiproliferative flavonoids. GADD153 functions as a transcription factor that regulates the expression of a panel of genes, including the Bcl-2 family genes Bcl-2 and Bim, which, in turn, elicit mitochondrial cell death [28,29]. Although the apoptotic consequence of flavonoid-induced elevations in GADD153 in cancer cells is evident, the detailed signaling events and underlying mechanisms are not entirely certain.

The aim of this study was to gain a better understanding of the molecular mechanism underlying the previously unknown apoptotic activity of the novel chalcone flavokawain B, isolated from Alpinia pricei Hayata, a perennial rhizomatous herb native to Taiwan. The leaves of A. pricei Hayata are frequently used for making traditional rice dumplings in Taiwan and the aromatic rhizomes are used for the treatment of common cold and abdominal discomfort. Despite it being widely consumed in many Asian countries, little is known about the bioactivity of A. pricei. In this study, we investigated the apoptotic activity of one chalcone flavonoid isolated from A. pricei and our results suggest that flavokawain B induces intracellular reactive oxygen species (ROS) generation, p38 MAPK phosphorylation, and GADD153 up-regulation, leading to mitochondria-dependent apoptosis in human colon cancer cells.

Materials and methods

Materials

Rhizomes of A. pricei were collected in Ping-Tung County, Taiwan, in March 2007 and identified by Dr. Yen-Hsueh Tseng (National Chung Hsing University). A voucher specimen was deposited in the herbarium of the same university. Air-dried rhizomes of A. pricei (2.0 kg) were extracted exhaustively with 70% ethanol (EtOH) at ambient temperature. Total crude EtOH extract was concentrated under vacuum to yield a residue (166 g) and then partitioned...
between ethyl acetate (EtOAc)-H₂O to give an EtOAc-soluble fraction (17.7 g) and an H₂O-soluble fraction. The EtOAc-soluble fraction was further separated by chromatography over silica gel (60–80 mesh) and eluted with an n-hexane/EtOAc gradient (n-hex/EtOAc, 95:5; 90:10; 85:15; 80:20; 70:30; 60:40; 50:50; 40:60; 0:100, each 1 L) to produce 23 fractions. Those fractions were further separated by high-performance liquid chromatography using a Luna silica column (250 × 10 mm; Phenomenex, Torrance, CA, USA) and eluted with an n-hexane/dichloromethane/EtOAc solvent system to obtain flavokawain B [30]. The structures of these compounds were elucidated and confirmed by spectroscopic analyses. UV spectra were recorded on a Jasco V-550 and IR spectra on a Bio-Rad FTS-40 spectrometer. Electron-impact mass spectrometry and high-resolution electron-impact mass spectrometry data were collected with a Finnigan MAT-95 mass spectrometer, and NMR spectra were recorded with Bruker Avance 500 and 300-MHz FT-NMR spectrometers, at 500 (1H) and 75 MHz (13C).

Fetal bovine serum (FBS) and penicillin/streptomycin were obtained from Gibco/BRL Life Technologies (Grand Island, NY, USA). The anti-poly(ADP) ribose polymerase (PARP), anti-Bim, anti-Bid, anti-tubulin antibody was from Abcam (Cambridge, MA, USA). The anti-β-actin and anti-Bak antibodies were from Millipore Corp. (Temecula, CA, USA). The anti-β-actin antibody was from Merck (Darmstadt, Germany). The FITC-conjugated anti-mouse secondary antibody, MitoTracker, and 2′,7′-dichlorodihydrofluorescein diacetate (H₂DCFDA) were from Molecular Probes (Eugene, OR, USA). The dihexyloxocarbocyanine iodide (DiOC6(3)) was purchased from Calbiochem (San Diego, CA, USA). The anti-mouse IgG antibody and all the other chemicals were purchased from Sigma Chemical Co. (St. Louis, MO, USA), unless otherwise specified.

Cell culture and transfection

Wild-type and p53−/− HCT116 (human colon cancer) cells were grown in McCoy’s 5A medium with 10% fetal bovine serum. A-549 (human non-small-cell lung cancer), NIH3T3 (mouse fibroblast), and HFW (human fibroblast, originally derived from newborn human foreskin [31,32]) cells were cultured in DMEM containing 10% FBS. Cells were maintained at 37 °C in a humidified atmosphere of 5% CO₂ in air, and medium was replaced every 2–3 days. The HCT116 lines were generously given by Dr. Chia-Che Chang (National Chung Hsing University, Taiwan). HFW and A-549 lines were a gift from Dr. Show-Mei Chuang (National Chung Hsing University, Taiwan). The NIH3T3 line was from Dr. Jaw-Ji Yang (Chung Shan Medical University, Taiwan).

siRNA against human GADD153 (sc-35437) and scrambled siRNA (sc-37007) were purchased from Santa Cruz Biotechnology and were transfected into cells using Lipofectamine 2000 according to the manufacturer’s protocol (Invitrogen, Carlsbad, CA, USA). For the autophagy experiment, HCT116 cells were transiently transfected with the pEGFP or pEGFP-LC3 construct (a generous gift from Dr. Tamotsu Yoshimori, Osaka University, Japan) using the jetPEI transfection reagent according to the manufacturer’s protocol (Polyplus-Transfection SA, Illkirch, France).

Cell viability assays

Cells were seeded onto 96-well culture plates at 8 × 10³ cells/well and permitted to adhere overnight at 37 °C. After incubation, the cells were treated with a 0.5 mg/ml solution of 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT; 100 μl/well) for 2 h at 37 °C. The number of viable cells was determined by uptake and reduction of MTT, assayed at 570 nm using a microplate reader. All experiments were performed at least in triplicate on three separate occasions. Data are presented as means ± SD.

Colony formation assay

Two hundred cells were seeded onto a 6-cm dish and incubated in culture medium with various concentrations of flavokawain B for 10 days to allow colony formation. For the inhibitor experiments, cells were pretreated with individual inhibitors for 1 or 2 h before 10 μM flavokawain B exposure in the presence of inhibitors. After incubation for 10 days, colonies were fixed in 1.25% glutaraldehyde at room temperature for 30 min, rinsed with distilled water, and stained with...
a 0.05% methylene blue solution. The number of colonies was counted and recorded.

Impedance measurement with the xCELLigence system

Cells (1 × 10^4/well) were seeded onto E-plates and incubated for 30 min at room temperature, followed by placing the E-plates onto the Real-Time Cell Analyzer station (xCELLigence system; Roche, Mannheim, Germany). Cells were grown for 24 h, with impedance measured every hour, before pretreatment with antioxidant for 1 h followed by addition of 10 μM flavokawain B. The cells were monitored every hour for a total of 80 h. In another experiment, 2 × 10^4/well GADD-knockdown and control cells were grown for 20 h before 10 μM flavokawain B exposure for a total of 80 h, with impedance measured every hour. Cell impedance is characterized by the cell index (CI) values \((Z_i - Z_0) \text{ ohm/15 ohm, where } Z_0 \text{ is the background resistance and } Z_i \text{ is the individual time point resistance})\) and the normalized cell index was determined as the CI at a certain

![Graph](image_url)

Fig. 3. Flavokawain B-induced mitochondria-dependent apoptosis. (A) The loss of mitochondrial membrane potential was assessed by flow cytometric analysis of DiOC(3) retention in cells treated with FB for 12 h. (B, C) Representative images of laser confocal microscopic analyses of MitoTracker-stained mitochondria and cytochrome c (B) or Bak (C) subcellular localization in control and FB-treated cells are shown. The scale bars indicate 20 μm.
time point divided by the CInml_time at the normalization time point (nml_time).

Apoptosis assays

Apoptosis was measured using an annexin V–FITC apoptosis detection kit (BD Pharmingen, San Jose, CA, USA). Cells cultured in 6-cm dishes were trypsinized and collected by centrifugation. The cell pellet was washed, resuspended in 1× binding buffer, and stained with annexin V–FITC, as recommended by the manufacturer. Cells were also stained with propidium iodide (PI) to detect necrosis or late apoptosis. The distribution of viable (FITC/PI-negative), early apoptotic (FITC-positive), late apoptotic (FITC/PI-double positive), and necrotic (PI-positive, FITC-negative) cells was analyzed using a Beckman Coulter FC500. The results are expressed as percentage of total cells.

Confocal microscopy

Cells were grown overnight on coverslips, treated with 50 μM flavokawain B for 12 h, and incubated with MitoTracker (Molecular Probes) for 20 min. Cells were then washed, fixed in 4% paraformaldehyde, washed with phosphate-buffered saline (PBS), and permeabilized with 0.01% Triton X-100. For the apoptosis experiments, coverslips were stained with anti-cytochrome c or anti-Bak antibodies before being observed under a microscope. Immunofluorescence images were acquired on a confocal microscope (TCS SP5; Leica Microsystems, Bannockburn, IL, USA).

Cytofluorimetric analysis of mitochondrial membrane potential

Changes in mitochondrial membrane potential characteristic of apoptosis were studied using the cationic lipophilic dye DiOC6(3).

Measurement of intracellular calcium concentrations

Free cytosolic calcium concentrations were measured using the cell-permeative, calcium ion-sensitive fluorescent dye Fluo-3AM. At the end of flavokawain B exposure for 1 h, cells were washed with PBS and incubated with 20 mM Fluo-3AM for 30 min. The cells were collected by trypsinization and centrifugation, washed with PBS, and centrifuged at 200 g for 5 min and intracellular calcium concentrations were analyzed using a Beckman Coulter FC500.

Measurement of ROS

At the end of ROS treatment, cells (2×10^5) were washed with PBS and incubated with 5 μM H2DCFDA in dimethyl sulfoxide for 30 min. Cells were collected by trypsinization and centrifugation, washed with PBS, and centrifuged at 200 g for 5 min, and analyzed immediately using a Beckman Coulter FC500 flow cytometer.

Cell-cycle analysis

In brief, 10^6 cells were collected and washed in PBS, slowly fixed in 75% ethanol, and kept at −20 °C for at least 1 h. The cell pellet was then washed again with PBS and centrifuged at 500 g for 5 min. The pellet was resuspended in 200 μl cold PBS and stained in the dark with PI solution (20 mM Tris, pH 8, 1 mM NaCl, 0.1% NP-40, 1.4 mg/ml

Fig. 4. Flavokawain B-induced GADD153 up-regulation. HCT116 cells were treated with 50 μM flavokawain B for 0–24 h. (A) GADD153 and ATF4 mRNA levels were determined by RT-PCR using β-actin as an internal control. (B, C, D) Cells were treated with 50 μM flavokawain B for 0–12 h. Aliquots of cell lysates were separated by SDS–PAGE and analyzed for GADD153 (B), Bim and Bcl-2 protein expression (C), or p38 phosphorylation (D) by Western blotting. β-Actin or tubulin was used as an internal control to monitor for equal loading. (E, F) HCT116 cells were pretreated with SB203580 for 2 h followed by treatment with 50 μM flavokawain B for 12 h. Aliquots of cell lysates were separated by SDS–PAGE and analyzed for PARP by Western blotting analysis. β-Actin was used as an internal control to monitor for equal loading (E). GADD153 and Bim mRNA levels were determined by RT-PCR using β-actin as an internal control (F).
RNase A, 0.05 mg/ml PI) for 30 min in ice. The total cellular DNA content was analyzed with a Beckman Coulter FC500.

Western blot analysis

Cell extracts were prepared in lysis buffer (20 mM Tris–HCl, pH 7.4, 100 mM NaCl, 5 mM EDTA, 2 mM phenylmethylsulfonyl fluoride, 10 ng/ml leupeptin, and 10 µg/ml aprotinin). Volumes of extract containing equal amounts of proteins (40 µg) were separated by SDS–PAGE and transferred onto nitrocellulose membranes (Schleicher & Schuell, Keene, NH, USA). The membranes were blocked, washed, and then probed with primary antibody. After being washed to remove primary antibody, the membranes were incubated with horseradish peroxidase-conjugated secondary antibody for 1 h. The blots were washed again and developed using enhanced chemiluminescence according to the manufacturer’s protocol (Amersham Biosciences, Piscataway, NJ, USA).

Reverse transcriptase-polymerase chain reaction (RT-PCR)

Total RNA from HCT116 cells was isolated using the TRIzol reagent (Gibco). The first-strand cDNA was synthesized from 1 µg of total RNA using Superscript II (Life Technologies, Rockville, MD, USA). The sequences of the primers used to amplify GADD153 were 5′-CAGGTTCAGCC (antisense), and those for β-actin were 5′-GATGATGATGATGATGAT (antisense), those for ATF4 were 5′-CTCACTCTATCGGGTTCTCC (sense) and 5′-GTGTCAGATTCACCATTCGG (antisense), those for Bim were 5′-TGATCTAAGTTCGATGTTG (sense) and 5′-CGATATCTCAGGTTCAGGC (antisense), and those for i-actin were 5′-GATGATTGATGATGATGAT (antisense), and those for β-actin were 5′-GATGATGATGATGATGAT (antisense). Reaction conditions consisted of 30 cycles of 95 °C for 1 min, 58 °C for 1 min, and 72 °C for 1 min, followed by a final extension at 72 °C for 7 min. PCR products were analyzed by electrophoresis in 0.8% agarose gels.

Statistics

Data are expressed as the means ± SD of three independent experiments. The differences between the control and the treatment groups were calculated by one-way ANOVA, and a post hoc Dunnett test was used to evaluate significance levels.

Results

Flavokawain B effectively reduces viability and proliferation of colon cancer cells

The predominant chalcone from kava extract, flavokawain A, has been reported to induce apoptosis in bladder cancer cells through a Bax- and mitochondria-dependent pathway [11]. In this study, a structurally related compound, flavokawain B, was isolated from the rhizome of *A. pricei* and used in a cytotoxicity study. To determine an effective concentration range, we first tested the dose dependence of flavokawain B cytotoxicity in four cell lines, HCT116, A-549, NIH3T3, and HFW, measuring cell viability by MTT assays. Flavokawain B was significantly cytotoxic at concentrations of 25 µM and higher in all cells tested for 24 h (Fig. 1A) and, at 25 µM, induced a time-dependent decrease in viability of all four lines tested (Fig. 1B). This time-dependent cytotoxicity was especially prominent in the HCT116 colon cancer cell line compared to the others, including two noncancerous lines (NIH3T3 and HFW), and HCT116 cells were selected for use in subsequent studies. We also examined the toxicity of the structurally similar oxymethyl-substituted compound FB-OMe (2′,4′,6′-trimethoxy chalcone) and found that this compound had no effect on cell viability (Fig. 1C), but how OMe replacement blunted the cytotoxicity of flavokawain B is not yet clear. Moreover, flavokawain B dramatically inhibited the colony-forming ability of HCT116 cells, reducing colony numbers to 51 and 5% of control at 10 and 25 µM, respectively, indicating a potent antiproliferative activity against colon cancer cells (Fig. 1D). In agreement with the viability results observed in Fig. 1B, flavokawain B was much less effective on the colony-forming ability of the other three lines, especially on that of human fibroblast (HFW) cells (Fig. 1D).

Fig. 5. Flavokawain-induced intracellular calcium level and the effect of calcium chelator on flavokawain B-induced apoptosis. HCT116 cells were preincubated with or without 10 µM (or higher) BAPTA for 20 min followed by treatment with 50 µM flavokawain B for 12 h. (A) Intracellular calcium concentration was analyzed by flow cytometry. Fluo-3-AM fluorescence histograms show the overlay of control and FB-treated cells. The experiments were performed at least three times with similar results. (B) Aliquots of cell lysates were separated by SDS–PAGE and analyzed for PARP cleavage by Western blotting. i-Actin was used as an internal control to monitor for equal loading. (C) The distribution of viable, early apoptotic, later apoptotic, and necrotic cells was analyzed. The graphs depict apoptotic and necrotic populations of cells double stained with PI- and FITC-labeled annexin V. The results are expressed as percentage of total cells.
Flavokawain B triggers caspase- and mitochondria-dependent apoptosis

To further analyze the inhibitory effect of flavokawain B, we analyzed PARP cleavage and found that PARP cleavage was induced notably in cells treated with 50 μM flavokawain B for 8 h (Fig. 2A). In agreement with our PARP cleavage data, the percentage of apoptotic HCT116 cells was increased to nearly 70% in cells treated with 50 μM flavokawain B for 24 h, an effect that was considerably blunted by pretreatment with the pancaspase inhibitor Z-VAD-fmk (Fig. 2B). To investigate whether the extrinsic pathway plays a role in flavokawain B-mediated apoptosis, we analyzed cells for the appearance of truncated Bid (tBid) and found that tBid was not induced by flavokawain B treatment (Fig. 2C). This observation was further supported by the results of experiments using the caspase-8 inhibitor Z-IETD-fmk, which was largely incapable of protecting against apoptosis (Fig. 2D), indicating that caspase-8 is dispensable in flavokawain B-mediated apoptosis.

We next examined the effect of flavokawain B on mitochondrial function in colon cancer cells. As illustrated in Fig. 3A, treatment of HCT116 cells with 50 μM flavokawain B induced a loss of mitochondrial membrane potential, measured by DiOC6(3) retention. In addition, treatment of HCT116 cells with flavokawain B increased the release of mitochondrial cytochrome c into the cytosol (indicated by arrows in Fig. 3B). This increased amount of cytosolic cytochrome c was associated with enhanced colocalization of Bak protein and mitochondria detected by MitoTracker staining (indicated by arrows in Fig. 3C). These results reveal that, in HCT116 cells, flavokawain B induced caspase- and mitochondria-dependent apoptosis, characterized by cytochrome c release and Bak translocation to mitochondria.

Flavokawain B enhances up-regulation and transcriptional activity of GADD153

To expand on our observations, we sought to identify upstream signals that mediate mitochondria-dependent apoptosis in our system. Because the ER plays major roles in the initiation of apoptosis, we examined the expression of GADD153, a marker for endoplasmic reticulum stress [20]. We found that GADD153 was notably up-regulated at the transcriptional level within 2 h of treating with 50 μM flavokawain B, an increase that was maintained for 24 h (Fig. 4A). The expression of GADD153 and apoptosis were shown to be regulated by enhanced transcription levels of ATF4 in response to proteasome inhibition [33]. However, we did not observe a significant increase in ATF4 RNA level (Fig. 4A). The increase in GADD153 mRNA was associated with a concomitant increase in GADD153 protein expression that was evident at 4 h of treatment (Fig. 4B).

GADD153, acting as a transcription factor in response to ER stress, is known to regulate the expression of a set of genes including many Bcl-2 family proteins to elicit mitochondrial cell death [21,28,29]. To demonstrate that the GADD153 induced by flavokawain B possesses transcriptional activity, we examined the expression of the GADD153 target genes Bcl-2 and Bim. Consistent with its apoptosis-inducing activity, flavokawain B reduced the expression of prosurvival Bcl-2 and augmented the expression of proapoptotic Bim, especially Bim L and Bim S (Fig. 4C). Phosphorylation of GADD153 by members of the p38 MAPK family is known to enhance GADD153 transcriptional activity [34,35]. In addition, p38 MAPK is documented to be important in IL-24-mediated induction of the GADD family and selective apoptosis [36]. Similarly, increased expression of GADD members by peroxynitrite is linked to the p38 MAPK pathway [37]. To study the role of p38 MAPK in our system, we analyzed the phosphorylation level of p38 MAPK and found that treatment with flavokawain B for 30 min induced phosphorylation of p38 MAPK (Fig. 4D). Pretreatment with the p38 MAPK inhibitor SB203580 significantly decreased the flavokawain-induced PARP cleavage (Fig. 4E) as well as the transcriptional level of the Bim short form that was stimulated by flavokawain B (Fig. 4F). In addition, we also observed an inhibition of flavokawain B-induced GADD153 RNA level by the p38 MAPK inhibitor (Fig. 4F). These changes in the protein and RNA levels of GADD153 target genes are consistent with up-regulation of GADD153.

Fig. 6. The cytotoxic effect of flavokawain B was independent of p53. (A) HCT116 p53 wild-type and p53-null cells were exposed to various concentrations of flavokawain B for 24 h, and cell viability was measured using MTT assays. Values (means ± SE) are from at least three independent experiments. There was a significant decrease in cell viability in cells treated with flavokawain B compared with controls (*p<0.05, **p<0.01). (B) p53 wild-type and p53-null cells were treated with or without 25 μM flavokawain B for 24 h, and the distribution of viable, early apoptotic, later apoptotic, and necrotic cells was analyzed. The graphs depict apoptotic and necrotic populations of cells double stained with PI- and FITC-labeled annexin V. The results are expressed as percentage of total cells. (C) p53 wild-type and p53-null cells were treated with 50 μM flavokawain B for 0–6 h. Aliquots of cell lysates were separated by SDS–PAGE and analyzed for GADD153 level by Western blotting. Tubulin was used as an internal control to monitor for equal loading.
expression and increased phosphorylation of p38 MAPK to enhance transcriptional activity of GADD153.

Because calcium signaling plays a vital role in ER-mediated apoptosis [38], we further analyzed the intracellular calcium concentration in treated cells. As shown in Fig. 5A, flavokawain B treatment for 1 h increased intracellular calcium levels. However, pretreatment with 10 μM BAPTA, a common chelator of intracellular calcium ions, did not effectively attenuate flavokawain B-induced intracellular calcium levels (Fig. 5A). Similarly, the chelator was ineffective at reducing flavokawain B-mediated PARP cleavage (Fig. 5B) as well as protecting cells against apoptosis (Fig. 5C). However, pretreatment with high concentrations (>10 μM) of BAPTA alone induced intracellular calcium concentration in our system. It is not yet clear whether calcium signaling plays a key role in flavokawain B-induced apoptosis. Further experiments are crucial to clarify this issue.

Flavokawain B-induced up-regulation of GADD153 and apoptosis are independent of p53

Liu et al. have reported a p53-dependent up-regulation of GADD153 and apoptosis upon hypoxia in HCT116 cells [39]. To examine whether p53 is important in flavokawain B-mediated apoptosis, we conducted experiments using a p53-null HCT116 line. Flavokawain B reduced cell viability to similar extents in both wild-type p53-containing and p53-null HCT116 cell lines (Fig. 6A). Consistent with this, the percentages of apoptotic cells were comparable in flavokawain B-treated p53 wild-type and p53-null lines (Fig. 6B). Most importantly, treatment of p53-null cells with 50 μM flavokawain B for 6 h stimulated GADD153 expression, verifying that the induction of apoptosis and GADD153 expression by flavokawain B was independent of p53 (Fig. 6C).

The generation of reactive oxygen species is required for flavokawain B-induced apoptosis

GADD153 has been shown to down-regulate Bcl-2, exhaust cellular glutathione, and enhance ROS production, resulting in apoptosis [28]. Other evidence, however, suggests that ROS lie upstream of ER stress in the pathway leading to apoptosis [40–42]. To clarify the role of intracellular ROS generation in flavokawain B-induced apoptosis, we utilized the fluorescent dye H2DCFDA, which produces enhanced fluorescence when cells generate ROS. In cells treated with flavokawain B, intracellular ROS production increased at 30 min (Fig. 7A). This increase in H2DCFDA-based fluorescence was inhibited by pretreatment with the ROS scavenger N-acetylcysteine (NAC), which reduced the flavokawain B-induced increase in fluorescence from 44.1 to 7.9% (Fig. 7B). We also validated that the apoptotic effect of flavokawain B treatment for 6 h was inhibited by pretreatment with NAC (Fig. 7C). NAC pretreatment also completely abrogated the up-regulation of GADD153 and concurrent cleavage of PARP induced by flavokawain B (Figs. 7D and E). These results indicate that ROS generation is required for flavokawain B-induced GADD153 expression and apoptosis.

Fig. 7. Flavokawain B-induced intracellular ROS generation, resulting in apoptosis. (A) Percentage changes in intracellular ROS generation were measured in HCT116 cells treated with or without 50 μM flavokawain B for 30 min. (B, C) HCT116 cells were preincubated with or without 20 mM NAC at 37 °C for 2 h before exposure to 50 μM flavokawain B for 6 h. Percentage changes in intracellular ROS generation were measured (B). The distribution of viable, early apoptotic, later apoptotic, and necrotic cells was analyzed (C). The graphs depict apoptotic and necrotic populations of cells double stained with PI- and FITC-labeled annexin V. The results are expressed as percentage of total cells. (D, E) Cells were preincubated with or without 20 mM NAC for 2 h before exposure to 50 μM flavokawain B for 6 h. Aliquots of cell lysates were separated by SDS–PAGE and analyzed for GADD153 (D) and PARP cleavage (E). Anti-β-actin was used as a loading control. The graphs are representative of three independent experiments.
To investigate the role of GADD153 in flavokawain B-induced apoptosis, we used the RNAi technique to knock down the induction of GADD153 in HCT116 cells. The up-regulation of GADD153 by flavokawain B was effectively inhibited at both protein (Fig. 8A) and mRNA levels (Fig. 8B). Moreover, GADD153 knockdown markedly reduced the flavokawain B-enhanced mRNA level of short-form Bim (Fig. 8B). Using flow cytometry to assess cell death, we found that GADD153 down-regulation diminished flavokawain B-induced apoptosis; as an alternative, cells die of necrosis (Fig. 8C). Furthermore, the xCELLigence system was used to continuously monitor the effect of flavokawain B on cellular events in GADD153-knockdown cells, measuring electrical impedance and displaying the CI value. The presence of the cells on the top of the electrodes produces an elevation in electrode impedance that is determined by the cell number and the degree of cell adhesion. We showed that untreated wild-type cells demonstrated an increase in the cell index values and reached a plateau phase after 70 h. RNAi-transfected cells exhibited a slower growth rate compared to the wild type, especially the GADD153-knockdown line. After the point of treatment, cells displayed a decreased cell index pattern induced by flavokawain B.

Fig. 8. GADD153 knockdown reduced flavokawain B-induced protein expression, mRNA level, and apoptosis. HCT116 cells were transfected with control siRNA or GADD153 siRNA as described under Materials and methods. Cells were treated with or without 25 μM flavokawain B for 12 h. (A) Aliquots of cell lysates were separated by SDS-PAGE and analyzed for GADD153 level by Western blotting. β-Actin was used as an internal control to monitor for equal loading. (B) GADD153 and Bim mRNA levels were determined by RT-PCR using β-actin as an internal control. (C) Cells were assayed for apoptosis. The graphs depict apoptotic and necrotic populations of cells double stained with PI- and FITC-labeled annexin V. The results are expressed as percentage of total cells. (D) Dynamic monitoring of cells treated with or without 10 μM flavokawain B using impedance technology as described under Materials and methods. Normalized cell index was measured over 80 h.
in all three lines. Importantly, GADD153 knockdown did not reverse flavokawain B-repressed cell growth and the cells displayed the slowest growth compared to wild-type and control RNAi cells (Fig. 8E). Similarly, there was no protective effect of GADD153 knockdown on flavokawain B-induced clonogenic cell killing (data not shown). These data suggest a key role for GADD153 in flavokawain B-induced apoptosis but not cell growth inhibition.

Multiple pathways are activated by flavokawain B leading to cell growth reduction

To further analyze whether the flavokawain B-mediated growth inhibition resulted from impaired cell proliferation, the cell-cycle profile was examined by nuclear DNA staining with propidium iodide using flow cytometry. The percentage of G2/M cells notably increased
with flavokawain B treatment in HCT116 cells (Fig. 9A), whereas GADD153 knockdown reversed flavokawain B-induced G2/M accumulation (Fig. 9B). Moreover, flavokawain B-treated cells exhibited changes in LC3 distribution indicative of the formation of autophagic vacuoles. In these cells, the pattern of EGFP–LC3 localization was similar to that observed in cells serum-starved for 5 h, a standard procedure for inducing autophagy (Fig. 9C). Based on these results, it is possible to propose that flavokawain B induces multiple pathways leading to HCT116 cell growth inhibition in addition to apoptosis.

To confirm this interpretation, we tested the effects of individual inhibitors on flavokawain B-repressed colony-forming ability after 10-day exposure. It was found that pretreatment with NAC (a ROS scavenger) for 2 h before treatment diminished flavokawain B-induced clonogenic cell killing effectively (Fig. 9D). A similar result was observed in cells pretreated with SB203580 (a p38 MAPK inhibitor), although to a lesser extent. Pretreatment with z-VAD-fmk (pancaspase inhibitor) or PEG–CAT (catalase, which degrades hydrogen peroxide), however, did not confer protection against flavokawain B toxicity (Fig. 9D). Pretreatment with DPI (a pan-NADPH oxidase inhibitor) was also ineffective at reducing flavokawain B-mediated clonogenic cell killing (data not shown). Additionally, cell impedance measurements showed that pretreatment with PEG–CAT before flavokawain B exposure augmented the flavokawain B-reduced cell index values moderately, suggesting that this antioxidant shielded cells from flavokawain B-derived ROS damage (Fig. 9E). However, the pretreatment with NAC seemed to interfere with the cell impedance measurement; therefore, no data were obtained. These results indicate that, in HCT116 cells, certain ROS derived from flavokawain B are important in cell growth inhibition.

Taken together, our results reveal that flavokawain B is markedly cytotoxic to HCT116 cells and acts through multiple pathways, including G2/M accumulation, autophagy, and apoptosis. Primarily, in this study, we demonstrate that flavokawain B provokes intracellular ROS generation, p38 MAPK phosphorylation, and GADD153 up-regulation, leading to mitochondria-dependent apoptosis in human colon cancer cells.

Discussion

In this study, we investigated the antiproliferative effect of flavokawain B, isolated from rhizome extracts of A. pricei Hayata, on colon cancer cells. Our results provide the first evidence for cytotoxicity mediated by flavokawain B through the induction of G2/M accumulation, autophagy, and apoptosis, leading to HCT116 colon cancer cell growth inhibition. In particular, flavokawain B provokes apoptosis, demonstrating that this chalcone enhances intracellular ROS generation, p38 MAPK phosphorylation, and GADD153 expression. GADD153, in turn, regulates the protein levels of Bcl-2 family members, causing a loss of mitochondrial membrane potential and apoptosis in HCT116 cells (summarized in Fig. 10).

Naturally occurring chalcones are precursor compounds for flavonoid synthesis in plants that have documented potential as therapeutic agents against cancer cells, reflecting their effects on cell-cycle progression, ROS production, and apoptosis [53,44,45]. Primarily, flavokawain A, the predominant chalcone in kava extracts, induces Bax- and mitochondria-dependent apoptosis and cell-cycle arrest in bladder cancer cells [46,47]. Interestingly, extracts of A. pricei Hayata, a perennial plant native to Taiwan commonly used in traditional Chinese food and folk medicine, have been documented to have anticancer properties in human carcinoma KB cells that are associated with induction of the mitochondria-dependent apoptotic pathway [46]. Furthermore, a recent study has focused on the anti-inflammatory effect of A. pricei Hayata [47]. Unexpectedly, we isolated for the first time a novel flavokawain B from A. pricei Hayata. Using the Bax-dependent apoptotic activity of the structurally related flavokawain A in cancer cells as a guide [48], we further studied the biological activity of this novel compound. Our cell viability assay revealed that flavokawain B induced cytotoxicity in a concentration- and time-dependent manner; remarkably, HCT116 cells exhibited a higher sensitivity to the anticancer effects of flavokawain B than did all other lines tested. Consistent with this result, flavokawain B specifically induced clonogenic cell killing in HCT116 cells, whereas it was much less effective in others, including two noncancerous lines (Fig. 1). There is precedence for the preferential inhibition of cancer cells by botanicals [48,49], a notion that is supported by this study. Although current understanding regarding their cytotoxic role in cancer cells is not entirely clear, a possible explanation may reside in a distinctive pathway in cancer cells that is currently under investigation in our laboratory.

Further exploration of the inhibitory effects of flavokawain B in HCT116 cells provided several lines of evidence to support a role for the intrinsic apoptosis pathway, including loss of mitochondrial membrane potential, Bak translocation, release of cytochrome c into the cytosol, and PARP cleavage (Figs. 2 and 3). These observations are not surprising because several laboratories have described mitochondria-dependent pathways in the cytotoxicity of various flavonoids [50–52]. Hence, the ultimate goal of this study was to identify the signaling elements upstream of mitochondria that are involved in flavokawain B-induced apoptosis. We approached this problem using the caspase-8 inhibitor z-IETD-fmk, which has been used in numerous studies to support a role for caspase-8 in the extrinsic pathway in flavonoid-mediated apoptosis [53,54]. We found that there was no appearance of truncated Bid and that pretreatment with z-IETD-fmk did not shield cells from apoptosis induced by flavokawain B, implying that the extrinsic apoptotic pathway plays a much less important role in our system (Fig. 2).

An exciting finding of this study is that flavokawain B elevates GADD153 protein expression and results in altered levels of Bcl-2 family members. Western blot and RT-PCR analyses revealed an up-regulation of GADD153 at both mRNA and protein levels (Figs. 4A and B). Elevated GADD153 is associated with various stresses—in particular, stresses in the ER, where protein synthesis, assembly, folding, and modification take place. Any such disturbance in the ER can lead to the accumulation of unfolded proteins and cause an ER stress response [18]. There is a growing awareness that apoptosis initiated by ER stress can cause mitochondrial damage [23,24]. However, the link between ER stress and the intrinsic apoptotic pathway has remained ambiguous. One suggested mechanism is that augmented GADD153 activity results in down-regulation of Bcl-2 and disruption of cellular redox homeostasis,
leading to ER stress-mediated apoptosis [28]. To verify that elevated GADD153 expression induced by flavokawain B is associated with increased transcriptional activity, we analyzed the expression of proteins encoded by the GADD153 target genes Bcl-2 and Bim of the Bcl-2 family [28,29]. Proapoptotic Bim was significantly up-regulated by flavokawain B concurrent with down-regulation of antiapoptotic Bcl-2 expression, changes that were associated with mitochondria dysfunction (Figs. 4C and 3). Three isoforms of Bim protein generated by alternative splicing are documented to be apoptotic, in particular the shortest one being the most effective [55]. In our system, expression of alternative splicing of Bim (Bim EL, Bim L, and Bim S) was up-regulated by flavokawain B (Fig. 4C). Moreover, we showed that an increase in p38 MAPK phosphorylation was induced by flavokawain B and pretreatment with a p38 MAPK inhibitor, SB203580, effectively reduced the PARP cleavage mediated by flavokawain B (Fig. 4E). The p38 MAPK inhibitor also notably reduced the transcriptional level of the Bim S form induced by flavokawain B, the most potent form to be apoptotic (Fig. 4F). Importantly, knockdown of GADD153 by RNA interference inhibits flavokawain B-induced mRNA levels of Bim S and apoptosis, indicating a crucial role for GADD153 in the apoptotic process triggered by flavokawain B (Fig. 8). Both gain-of-function and loss-of-function approaches have established a close link between GADD153 phosphorylation by p38 MAPK and GADD153 transcriptional activation [36,37], a connection that is reinforced by our findings in this study (Fig. 4). Although flavokawain B increased intracellular calcium concentrations, also a hallmark of ER stress-mediated apoptosis, pretreatment with a calcium chelator (BAPTA) did not alleviate flavokawain B-induced intracellular calcium levels, PARP cleavage, or apoptosis (Fig. 5). The close link between calcium signaling and ER stress-mediated apoptosis has been reported utilizing BAPTA as a chelator for intracellular calcium [20]. In our system, BAPTA did not alleviate avokawain B-induced intracellular calcium levels in our system. Further experiments are in progress to clarify this issue.

Consistent with previous reports, which have shown that flavonoids provoke oxidative stress [57,58], our results showed that flavokawain B also induced ROS generation. By pretreating cells with NAC, we demonstrated that ROS are essential for flavokawain B-induced GADD153 up-regulation and apoptosis (Fig. 7). Furthermore, NAC pretreatment effectively protects cells from flavokawain B-induced clonogenic cell killing (Fig. 9D), confirming that ROS derived from flavokawain B might be a novel promising chemocytotoxic agent for treating colon cancer.

References

