
polymers

Article

Effects of Acetylated Veneer on the Natural
Weathering Properties of Adhesive-Free Veneer
Overlaid Wood-Plastic Composites

Ying-Ying Chao 1,†, Ke-Chang Hung 1,†, Jin-Wei Xu 1, Tung-Lin Wu 2,3 and Jyh-Horng Wu 1,*
1 Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan;

banlieue13k@gmail.com (Y.-Y.C.); d9833004@mail.nchu.edu.tw (K.-C.H.); ecsgunro@gmail.com (J.-W.X.)
2 College of Technology and Master of Science in Computer Science, University of North America, Fairfax,

VI 22033, USA; tonywuwu22@gmail.com
3 Department of Wood Science and Design, National Pingtung University of Science and Technology,

Pingtung 912, Taiwan
* Correspondence: eric@nchu.edu.tw; Tel.: +886-4-22840345
† These authors contributed equally to this work.

Received: 31 January 2020; Accepted: 26 February 2020; Published: 27 February 2020
����������
�������

Abstract: The purpose of this study is to investigate the natural weathering properties of unmodified
and acetylated veneer overlaid wood-plastic composites (vWPCs) manufactured by one-step hot press
molding. The results show that the water absorption and thickness swelling of vWPC with acetylated
veneer were lower than those of unmodified vWPC. In addition, the surface tensile strength of vWPC
increased with increasing weight gain of acetylated veneer, and the flexural properties of vWPC were
not significantly different. Furthermore, the results of natural weathering demonstrated that not only
the photostability but also the modulus of elasticity (MOE) retention ratio and surface tensile strength
of vWPC with acetylated veneer were significantly higher than those of vWPC with unmodified
veneer. Thus, better dimensional stability, surface tensile strength, and weathering properties can be
achieved when the vWPC is made with acetylated veneer, especially those containing veneers with a
higher weight percent gain.

Keywords: acetylation; hot press molding; natural weathering; veneer overlaid wood-plastic
composites (vWPCs); weatherability

1. Introduction

In the past few decades, wood-plastic composites (WPCs) have been used in various fixtures,
such as window framing, fencing, roofing, decking, and siding [1]. The global WPC market has
experienced significant growth in North America and Europe [2]. Additionally, WPCs have been
increasingly the focus of research interest [3,4]. However, WPCs are composed of synthetic polymers
and wood particles (or wood fiber), which are subjected by photodegradation upon exposure to
sunlight, especially ultraviolet (UV) light. Therefore, the color fading and strength weakening of WPCs
can be caused by weathering and restrict the WPCs to certain outdoor applications.

It has long been shown that lignin is liable to photodegrade among constituents of wood,
and this leads to radical-induced depolymerization of lignin, hemicellulose, and cellulose at the
wood surface [5,6]. Furthermore, the strength losses of wood after weathering are caused by wood
swelling and shrinkage after moisture effects [7]. It is well known that the dimensional stability,
hydrophobicity, and weatherability or durability of wood can be improved by acetylation [8–10].
On the other hand, according to Altenbach [11], efficient load bearing of conventional polymer
composites with homogeneous single-layered structures could be achieved when polymer composites
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have multilayered structures, thereby making polymer composites more valuable. It has been
shown that layered particleboard and fiberboard have higher flexural strength and stiffness than
homogeneous counterparts at the same density level. Hsu et al. [4] reported that the specific flexural
properties of three-layered bamboo-plastic composite (BPC3L) were higher than those of homogeneous
single-layered BPC.

Furthermore, Najafi et al. [12] and Adhikary et al. [13] indicated that recycled plastic is usually
suitable for manufacturing WPCs. Therefore, to improve the aesthetic appearance, flexural strength,
and weathering properties of WPCs, unmodified and various acetylated veneers were applied to the
surface of WPCs to manufacture adhesive-free veneer overlaid wood-plastic composites (vWPCs) by
one-step hot press molding in this study. Consequently, the physicomechanical and weathering properties
of vWPCs with unmodified and acetylated veneers were compared to evaluate the effectiveness of
acetylation as a means of improving the weatherability of vWPCs for outdoor applications.

2. Materials and Methods

2.1. Materials

Taiwan red pine (Pinus taiwanensis Hayata), a fast-growing wood species, was sampled from the
experimental forest of the National Chung Hsing University in Nan-Tou County. Wood particles were
prepared by hammer milling and sieving; particles between 16 and 24 mesh were selected and used
in this study. Defect-free rotary-cut radiata pine (P. radiata D. Don.) veneer sheets with a thickness
of 2 mm were purchased from Wan Tsai Industry Co., Ltd. (Chiayi, Taiwan). Recycled high-density
polyethylene (rHDPE; MFI: 4.20 g/10 min; density: 940 kg/m3) was kindly supplied by Horng Gee
Co., Ltd. (Changhua, Taiwan). All plastic pellets were ground in an attrition mill to reduce their
particle size to less than 20 mesh before composite processing. The chemicals and solvents used in this
experiment were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).

2.2. Acetylation Treatments

Veneers were acetylated with acetic anhydride (AA) using the vapor phase reaction method [14]
at a solid/liquid ratio of 2 g/mL. All reactions were conducted at 140 ◦C for 2–8 h to obtain acetylated
veneers with different modification degrees. At the end of the reaction, the acetylated veneers were
washed with distilled water for 24 h to remove the reagent residues and byproducts (i.e., acetic acid).
Finally, the acetylated veneers were dried at 105 ◦C for 12 h, and the weight percent gain (WPG) was
calculated as follows: WPG (%) = 100(M1 −M0)/M0, where M0 and M1 are the oven-dried weights of
veneer before and after acetylation, respectively.

2.3. Composite Processing

The flat-platen pressing process was applied to the manufacture of adhesive-free vWPCs according
to our previous studies [15,16]. The weight ratio of oven-dried wood particles (moisture content less
than 3%) to rHDPE powder was 50/50 for the WPC core. The manufacturing process of vWPCs is
shown in Figure 1. Two pieces of 2 mm thick veneers were used for the surface layers on both sides
of the WPC core mat, and the longitudinal grain directions of the surface veneers were parallel to
each other. The expected density of vWPCs was 800 kg/m3. The formed sandwich panels (300 mm
× 200 mm with 12 mm thickness) were hot pressed at 180 ◦C and 2.5 MPa for 8 min and then cold
pressed until the core temperature of the vWPCs decreased to 40 ◦C.
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Figure 1. Scheme of (a) wood acetylation and (b) adhesive-free vWPC processing. 

2.4. Natural Weathering Test 

For the natural weathering test, composite species were exposed facing south, inclined at a 45° 
angle for a period of 1185 days at the campus of National Chung Hsing University (24°07’25.7’’ N, 
120°40’30.7’’ E). During exposure periods, the temperature ranged from 7.7 to 36.6 °C, and the 
average relative humidity and annual precipitation were 77.0% and 6494 mm, respectively. The 
exposed samples were periodically removed, and their properties were measured regularly. 

2.5. Determination of vWPC Properties 

To determine the properties of the vWPCs, several determinations, including density, water 
absorption, thickness swelling, flexural properties, and surface tensile strength, were made according 
to the Chinese National Standard (CNS) 2215. In brief, specimens with dimensions of 230 mm × 50 
mm × 12 mm were used to evaluate flexural properties by the three-point static bending test with a 
loading speed of 10 mm/min and span of 180 mm. The surface tensile strength of the vWPC was 
determined on samples with dimensions of 50 mm × 50 mm × 12 mm at a tensile speed of 2 mm/min. 
All samples were conditioned at 20 °C and 65% relative humidity for 2 weeks prior to testing. The 
retention ratios of modulus of elasticity (MOE) and modulus of rupture (MOR) of the vWPCs after 
natural weathering were determined as follows: MOE retention ratio (%) = 100(MOEt/MOE0); MOR 
retention ratio (%) = 100(MORt/MOR0), where the measurements with the subscript indices 0 and t 
were for the vWPC data before and after weathering for a time t, respectively. 

2.6. ATR-FTIR Spectral Measurements 

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of all specimens 
were recorded on a Spectrum 100 FTIR spectrometer (Perkin–Elmer, Buckinghamshire, UK) 
equipped with a deuterated triglycine sulfate (DTGS) detector and a MIRacle ATR accessory (Pike 
Technologies, Madison, WI, USA). The spectra were collected by coadding 32 scans at a resolution of 
4 cm‒1 in the range from 650 to 4000 cm‒1. Three spectra were acquired at room temperature for each 
composite. 

2.7. Measurement of Surface Color 

The color of the composite surface was measured by a color and color difference meter (CM-
3600d, Minolta, Tokyo, Japan) under a D65 light source with a test window diameter of 8 mm. The 
color parameters L*, a*, and b* of all specimens were obtained directly from the colorimeter. Based on 
the CIE L*a*b* color system, L* is the value on the white/black axis, a* is the value on the red/green 

Figure 1. Scheme of (a) wood acetylation and (b) adhesive-free vWPC processing.

2.4. Natural Weathering Test

For the natural weathering test, composite species were exposed facing south, inclined at a 45◦

angle for a period of 1185 days at the campus of National Chung Hsing University (24◦07′25.7′′ N,
120◦40′30.7′′ E). During exposure periods, the temperature ranged from 7.7 to 36.6 ◦C, and the average
relative humidity and annual precipitation were 77.0% and 6494 mm, respectively. The exposed
samples were periodically removed, and their properties were measured regularly.

2.5. Determination of vWPC Properties

To determine the properties of the vWPCs, several determinations, including density, water
absorption, thickness swelling, flexural properties, and surface tensile strength, were made according
to the Chinese National Standard (CNS) 2215. In brief, specimens with dimensions of 230 mm × 50 mm
× 12 mm were used to evaluate flexural properties by the three-point static bending test with a loading
speed of 10 mm/min and span of 180 mm. The surface tensile strength of the vWPC was determined
on samples with dimensions of 50 mm × 50 mm × 12 mm at a tensile speed of 2 mm/min. All samples
were conditioned at 20 ◦C and 65% relative humidity for 2 weeks prior to testing. The retention ratios
of modulus of elasticity (MOE) and modulus of rupture (MOR) of the vWPCs after natural weathering
were determined as follows: MOE retention ratio (%) = 100(MOEt/MOE0); MOR retention ratio (%) =

100(MORt/MOR0), where the measurements with the subscript indices 0 and t were for the vWPC data
before and after weathering for a time t, respectively.

2.6. ATR-FTIR Spectral Measurements

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of all specimens were
recorded on a Spectrum 100 FTIR spectrometer (Perkin–Elmer, Buckinghamshire, UK) equipped with
a deuterated triglycine sulfate (DTGS) detector and a MIRacle ATR accessory (Pike Technologies,
Madison, WI, USA). The spectra were collected by coadding 32 scans at a resolution of 4 cm−1 in the
range from 650 to 4000 cm−1. Three spectra were acquired at room temperature for each composite.

2.7. Measurement of Surface Color

The color of the composite surface was measured by a color and color difference meter (CM-3600d,
Minolta, Tokyo, Japan) under a D65 light source with a test window diameter of 8 mm. The color
parameters L*, a*, and b* of all specimens were obtained directly from the colorimeter. Based on the CIE
L*a*b* color system, L* is the value on the white/black axis, a* is the value on the red/green axis, b* is the
value on the yellow/blue axis, and the ∆E* value is the color difference (∆E* = [(∆L*)2 + (∆a*)2 + (∆b*)2]1/2).
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2.8. Analysis of Variance

All results are expressed as the mean ± standard deviation (SD). The significance of differences
was calculated by Scheffe’s test or Student’s t-test, and p values < 0.05 were considered to be significant.

3. Results and Discussion

3.1. The Physical and Flexural Properties of vWPCs

The various physical and flexural properties of the vWPC with different WPGs of acetylated
veneers are shown in Table 1. The densities of all vWPCs were approximately 785–824 kg/m3, and there
were no significant differences among them. In addition, after 24 h of immersion in water, the water
absorption and thickness swelling decreased with increasing WPG of the veneer. Of these, the vWPC
with WPG 16 of acetylated veneers exhibited the lowest water absorption (9.9%) and thickness swelling
(1.6%). This phenomenon may be affected by the acetylation of hydroxyl groups of the veneer cell
wall with AA, which leads to a decrease in the content of hydrophilic hydroxyl groups and results in
more hydrophobic surfaces [17,18]. Another possible explanation for reducing the volume swelling of
the acetylated vWPC is that the volume of the veneer cell wall is occupied by the added chemicals
(bonded acetyl groups), which results in a decrease in additional swelling of the modified veneer upon
exposure to water soaking [19,20].

In addition, Table 1 also shows that there were no significant differences in the modulus of rupture
(MOR) and modulus of elasticity (MOE) between unmodified and acetylated vWPCs, even at a WPG
of 16%. The values of MOR and MOE for all vWPCs are approximately 46.2–51.9 MPa and 4.1–4.6 GPa,
respectively. This result indicated that the flexural properties of the vWPC were not influenced by the
acetylation of overlaid veneers. According to the reports of Rowell and Banks [21] and Birkinshaw
and Hale [22], acetylation with AA did not noticeably affect the mechanical properties of modified
wood. Therefore, the acetylated veneer did not significantly affect the flexural properties of the vWPC.
In contrast, the surface tensile strength of the veneer for vWPC increased with increasing WPG of
the veneer. The strength increased from the original 490 to 1153 kPa when the WPG of acetylated
veneer reached 16%. It is well known that the surface tensile strength of vWPCs depends on the
bonding strength between the WPC core and the overlaid veneer. The interfacial adhesion between the
veneer and the hydrophobic WPC core can be enhanced by veneer acetylation [18,23,24]. Thus, better
stress transfer from the surface veneer to the WPC core through the interface results in high surface
tensile strength.

Table 1. Effect of acetylated veneers on the physical and flexural properties of vWPCs.

vWPC
Density
(MPa)

24 h Soaking Flexural Properties Surface
Tensile

Strength (kPa)
Water

Absorption (%)
Thickness

Swelling (%)
MOR
(MPa)

MOE
(GPa)

Unmodified 803 ± 18 a 15.6 ± 1.1 a 7.1 ± 0.8 a 50.7 ± 6.1 a 4.6 ± 0.9 a 490 ± 66 b

WPG 6 785 ± 30 a 14.1 ± 0.9 ab 4.7 ± 1.9 b 51.9 ± 3.9 a 4.4 ± 0.5 a 823 ± 83 ab

WPG 11 819 ± 21 a 12.3 ± 1.6 bc 3.2 ± 1.2 bc 47.8 ± 3.2 a 4.1 ± 0.6 a 929 ± 17 a

WPG 16 824 ± 16 a 9.9 ± 1.7 c 1.6 ± 0.2 c 46.2 ± 8.6 a 4.2 ± 0.6 a 1153 ± 103 a

Values are the mean ± SD (n = 5 for 24 h soaking and flexural properties; n = 3 for surface tensile strength). Different
letters indicate significant differences within a column (p < 0.05).

3.2. Characteristics of the vWPCs During Natural Weathering

3.2.1. Appearance characteristics of the vWPCs during natural weathering

The appearance characteristics of all vWPCs changed significantly during 1185 days of natural
weathering. As shown in Figure 2, the surface color of all vWPCs darkens as the natural weathering
time increases. In addition, visible cracks developed remarkably at the surface of the veneer for vWPC
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with unmodified veneer after natural weathering for 32 days. Afterward, the number and size of cracks
in unmodified veneer increased with increasing exposure time up to 1185 days of natural weathering.
Similar results were also reported by Evans et al. [25]. The explanation given is that the unmodified
veneer swelled and shrank after absorbing and desorbing moisture, resulting in cracks at the veneer.
In contrast, the vWPCs with acetylated veneers showed almost no crack formation after 1185 days of
natural weathering. In other words, the weatherability of the vWPC with acetylated veneers is better
than that of the vWPC with unmodified veneers.
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3.2.2. Color Changes of the vWPCs During Natural Weathering

The color variation of vWPCs with unmodified and acetylated (WPG 6, WPG 11 and WPG 16)
veneers during 1185 days of natural weathering was evaluated using the CIE L*a*b* color system.
As shown in Figure 3, there was no significant difference in the L*, a*, and b* values of all vWPCs before
natural weathering. In addition, the L* value of vWPC with unmodified veneer decreased during
natural weathering (Figure 3a). This result is different from that of Stark [7], who reported that the
lightening of wood floor-plastic composites occurred during accelerated weathering. However, the
L* value of all vWPCs with acetylated veneers increased with increasing exposure time during the
first 8 days. Afterward, the value decreased with increasing exposure time. Compared to unmodified
vWPC, the L* value of acetylated vWPCs was higher than that of unmodified vWPC after weathering
for periods of up to 250 days. In addition, the b* value of all vWPCs showed no significant difference
(Figure 3c), but the a* value of unmodified vWPC was higher than that of acetylated vWPC for the
same period of time (Figure 3b). After 1185 days of natural weathering, the a* and b* values of all
vWPCs had no significant differences. These results revealed that the surface color of unmodified
vWPC was darker and redder than that of acetylated vWPC. Meanwhile, Figure 3d shows that all
vWPCs exhibited more sensitivity to color change at the initial natural weathering, and the ∆E* values
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of vWPCs with unmodified, WPG 6, WPG 11, and WPG 16 acetylated veneers were 9.5, 5.6, 6.9, and
6.9, respectively, after weathering for 8 days. Then, the value decreased with increasing exposure
time after weathering for periods of up to 32 days. Afterward, the value increased with increasing
exposure time until 512 days of natural weathering and then leveling off. The ∆E* values of vWPCs
with unmodified, WPG 6, WPG 11, and WPG 16 acetylated veneers were 34.5, 36.8, 33.8, and 37.3,
respectively, after natural weathering for 1185 days. This result demonstrated that unmodified vWPC
was more susceptible to photooxidation than acetylated vWPCs since acetylated veneers retarded the
photodegradation process during the initial period of natural weathering.
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Figure 3. Effect of acetylated veneers on the surface color of vWPCs after natural weathering for
1185 days. (a) L*, (b) a*, (c) b*, and (d) ∆E* values. Values are the mean (n = 5).

It is well known that among the constituents of wood, lignin is most susceptible to
photodegradation [26]. Most of the coloring substances generated by photooxidation of lignin
come from further reactions between the intermediary phenoxy radicals and oxygen, resulting in the
browning process of wood [27]. Therefore, the a* and b* values of vWPC with unmodified veneer
increased with increasing exposure time in the first 8 days. However, vWPCs with acetylated veneers
retarded the browning process during natural weathering, and similar results were observed on
acetylated veneer [8] and esterified wood [28]. Meanwhile, Ohkoshi [29] and Mitsui [30] reported that
the acetylated wood subjected by photobleaching upon exposure to UV, resulting in the L* value of
all vWPCs with acetylated veneers increased with increasing exposure time in the first 8 days. These
results suggest that the acetylation of wood can play a major role in controlling the natural weathering
process of wood and wood composites.

3.2.3. Mechanical Properties of the vWPCs During Natural Weathering

The changes in flexural properties and surface tensile strength of various vWPCs during weathering
are shown in Tables 2 and 3, respectively. Table 2 shows that the MOE retention ratios of vWPCs
with unmodified and acetylated veneers decreased significantly during natural weathering. Similar
results were reported for WPC weathering by Stark [7]. On the other hand, the retained MOE ratio
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of vWPCs with acetylated veneer (WPG 6, 11 and 16) usually remains at 83.6%–89.5% after natural
weathering for 64 days. In contrast, the MOE retention ratio of vWPCs with unmodified veneer was
significantly decreased to 48.7% after 64 days of natural weathering. The explanation given is that
photodegradation occurs mainly in the lignin on the veneer surface, leading to a cellulose-rich surface.
As a result, wood cell walls swell when penetrated by water, facilitating deeper light penetration and
providing sites for further degradation, resulting in the deterioration of mechanical properties for
veneers [31]. Meanwhile, the unmodified veneer swelled and shrank after absorbing and desorbing
moisture. Such cyclic dimensional changes could result in cracks at the veneer (Figure 2), leading to a
reduction in the MOE of the veneer and vWPC. However, the dimensional stability and hydrophobicity
of wood can be remarkably improved by acetylation [8–10], thus resulting in high strength retention
for acetylated composites during natural weathering, especially for higher WPG composites. After
1185 days of natural weathering, the MOE retention ratios of the vWPCs with various degrees of
acetylation of veneers decreased in the following order: WPG 16 (43.3%), WPG 11 (37.1%), WPG 6
(32.9%), and unmodified (15.8%). Of these, the vWPC with WPG 16 acetylated veneer retained the
greatest strength over the weathering period, while the vWPC with unmodified veneer retained the
least strength. Similar to the trend observed for the flexural strength, the MOR retention ratios of the
vWPCs were WPG 16 (40.2%) > WPG 11 (30.4%) > WPG 6 (21.0%) > unmodified (17.1%) after 1185
days of natural weathering. A similar result was observed on acetylated Scots pine by Even et al. [9].

Furthermore, as shown in Table 3, the surface tensile strength of all vWPCs generally decreased
with increasing natural weathering time. Among them, the veneers of all unmodified vWPC were
peeled off from the WPC core of vWPC after weathering for 512 days; thus, the unmodified vWPC had
not been detected. The explanation for this observation is that the interfacial adhesion between the
unmodified veneer and the WPC core is poor, and then the cyclic dimensional changes of veneer during
weathering lead to the surface veneer peeling off. However, the interfacial adhesion between the
veneer and the WPC core and the dimensional stability of veneers can be enhanced through acetylation.
Therefore, the surface tensile strength of vWPC with acetylated veneer remained at 331-349 kPa after
1185 days of natural weathering. These results demonstrate that the mechanical strength of vWPCs for
outdoor application could be improved by veneer acetylation.

Table 2. Effect of acetylated veneer on MOE and MOR retention ratio of vWPCs after natural weathering
for 1185 days.

vWPC
MOE Retention Ratio (%) MOR Retention

Ratio (%)

0 days 64 days 256 days 512 days 1185 days 1185 days

Unmodified 100.0 ± 8.4 a 48.7 ± 17.6 bB 38.2 ± 16.6 bcA 30.0 ± 13.7 bcA 15.8 ± 4.7 cA 17.1 ± 4.1 B

WPG 6 100.0 ± 17.2 a 86.2 ± 11.4 abA 49.5 ± 33.5 abA 41.9 ± 29.6 bA 32.9 ± 22.6 bA 21.0 ± 11.4 AB

WPG 11 100.0 ± 11.2 a 83.6 ± 12.5 abA 72.8 ± 30.5 abA 63.4 ± 32.3 abA 37.1 ± 21.8 bA 30.4 ± 11.9 AB

WPG 16 100.0 ± 19.5 a 89.5 ± 7.0 aA 78.5 ± 11.9 abA 67.5 ± 26.1 abA 43.3 ± 17.6 bA 40.2 ± 9.5 A

Values are the mean ± SD (n = 5). Different lowercase and capital letters indicate significant differences within a raw
and a column (p < 0.05), respectively.

Table 3. Effect of acetylated veneers on the surface tensile strength of vWPCs after natural weathering
for 1185 days.

vWPC
Surface Tensile Strength (kPa)

64 days 128 days 256 days 512 days 1185 days

Unmodified 250 ± 31 265 ± 3 295 ± 110 ND ND
WPG 6 797 ± 34 ** 654 ± 237 469 ± 199 367 ± 66 331 ± 30

WPG 11 686 ± 31 ** 757 ± 144 * 599 ± 246 515 ± 21 349 ± 23
WPG 16 722 ± 82 ** 889 ± 37 ** 864 ± 110 * 338 ± 78 342 ± 79

ND: not detected. Values are the mean ± SEM (n = 3). *: p < 0.05; **: p < 0.01 (one-tailed test) compared to the
“unmodified” group.
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3.2.4. ATR-FTIR Analysis of vWPCs During Natural Weathering

In this study, ATR-FTIR spectroscopy was used to monitor the specific reactions of vWPCs during
natural weathering. As shown in Figure 4, the intensity of absorption bands corresponding to the C=C
group in aromatic rings (1510 and 1600 cm−1) of lignin decreased with increasing exposure time. After
4 days of natural weathering, the absorption bands of unmodified veneers and acetylated veneers
with WPG 6 and 11 almost disappeared. However, the acetylated veneer with WPG 16 retained
some of the absorption bands of lignin. Similar results have been reported by Evans et al. [9], who
suggested that wood acetylation to lower WPG had no protective effect on lignin and even increased
the susceptibility of lignin to degradation during weathering. In addition, the absorption band of
the carbonyl (1731 cm−1) group of vWPC with unmodified veneer increased significantly in the first
4 days of weathering. Afterward, the absorption band of the carbonyl group decreased or even
disappeared as the exposure time increased. Accordingly, an explanation for this phenomenon is that
photodegraded products of lignin located on the surface of veneer are leached during weathering,
causing the absorption band of carbonyl groups to decrease. Furthermore, the absorption bands at
1737 (–OCOCH3, C=O), 1371 (–OCOCH3, C–H), and 1237 cm−1 (–OCOCH3, C–O) also decreased
significantly with increasing weathering time for all acetylated vWPCs. This result indicated that the
deacetylation or partial hydrolysis of these groups occurred during weathering. Similar results have
also been shown in some esterified wood [32]. Accordingly, these results revealed that the effect of
acetylation on improving the photostability of vWPCs was not significant.
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Figure 4. ATR-FTIR spectra of vWPCs with unmodified veneers (a), WPG 6 (b), WPG 11 (c), and WPG
16 (d) acetylated veneers during 1185 days of natural weathering.

4. Conclusions

Adhesive-free veneer overlaid wood-plastic composites (vWPCs) were successfully prepared by
the one-step flat-platen pressing process. The natural weathering properties of vWPCs are greatly
influenced by the acetylation of veneers. In this study, vWPCs with acetylated veneers were subjected
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by photobleaching upon exposure to UV in the first 8 days and retarded the browning process of
veneers during natural weathering. However, the ∆E* values of all vWPCs exhibited no significant
differences after 1185 days of natural weathering. Of all vWPCs, the vWPCs with a higher degree of
acetylation of veneer exhibited higher modulus of elasticity (MOE) and modulus of rupture (MOR)
retention ratios after 1185 days of natural weathering, while the vWPCs with unmodified veneer had
the lowest retention ratios. In addition, the absorption bands of acetyl groups decreased significantly
with increasing weathering time for all acetylated vWPCs. Accordingly, the mechanical property
retention of vWPCs can be enhanced through acetylation of veneers, but the effect of acetylation on
improving the photostability of vWPCs was not significant. Further research is needed to improve the
photostability of vWPCs for outdoor use.
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