生質物基質酚醛樹脂成型物熱安定性分析

陳奕君1* 李文昭2

(收件日期:民國104年12月1日、接受日期:民國104年12月30日)

【摘要】本研究將孟宗竹粉以酚為溶劑,硫酸及鹽酸為催化劑,在加熱環境下進行液化 處理,利用<u>所得兩種酚液化竹材及化石酚與甲醛反應製備水溶性與醇溶性Resol型酚醛樹</u> <u>脂(Phenol-formaldehyde resins; PF)及Novolak型PF樹脂,進一步則利用不同條件PF樹脂製</u> 作成型物,並以熱重分析(Thermogravimetric analysis)探討不同條件成型物之熱安定性,三 種類型PF樹脂成型物中,以Resol型醇溶性PF樹脂最佳,其次為Resol型水溶性PF樹脂。三 種酚原料PF樹脂所製作成型物比較,Resol型水溶性及醇溶性PF樹脂以液化竹材為原料者 之低溫側熱安定性優於以化石酚為原料者,Resol型樹脂成型物加熱至800℃之焦炭率約為 60%。而Novolak型PF樹脂成型物之熱安定性則以化石酚為原料之PF樹脂高於液化竹材為 原料之PF樹脂。

【關鍵詞】生質物、液化竹材、酚醛樹脂、熱重分析、熱安定性。

INVESTIGATION ON THE THERMAL STABILITY OF MOLDINGS MADE WITH BIOMASS-BASED PHENOL-FORMALDEHYDE RESINS

Yi-Chun Chen^{1*} Wen-Jau Lee²

(Received: December 1, 2015; Accepted: December 30, 2015)

[Abstract] Liquefied bamboo was prepared form liquefied *Phyllostachys heterocycla* (Moso bamboo) powder in phenol with strong acids as catalysts in this study. Liquefied bamboo was used as raw material to prepare biomass-based Resol type and Novolak type phenol-formaldehyde (PF) resins. The moldings of cured resins were manufactured from PF resins that prepared by different treatments. Thermally stabilities of biomass-based resins and fossil-based PF resins were studied by thermogravimetric analysis. Results of thermogravimetric analysis showed that moldings made with Resol type alcohol-soluble PF resin prepared from fossil-based phenol had better thermal stability than other types. Moldings made with Resol type watersoluble and alcohol-soluble PF resins prepared from biomass-based phenol had better thermal

^{1*} 國立中興大學森林學系助理教授,通訊作者,40227台中市南區國光路250號。 Assistant professor, Department of Forestry, National Chung-Hsing University. 250, Kuo Kuang Road Taichung, 40227 Taiwan, ROC. Corresponding Author. E-mail: chenyc@dragon.nchu.edu.tw

² 國立中興大學森林學系教授,40227台中市南區國光路250號。 Professor, Department of Forestry, National Chung-Hsing University. 250, Kuo Kuang Road Taichung, 40227 Taiwan, ROC.

stability than and similar high temperature thermal stability to that made with PF resin from fossil-based phenol, respectively. All Resol type resins had char yield ca. 60% at 800°C. On the other hand, Novolak PF resin made with fossil-based phenol had better thermal stability than that made with PF resin from biomass-based phenol.

[Key words] Biomass, Liquefied bamboo, Phenol-formaldehyde resins, Thermogravimetric analysis, Thermal stability.

I、前言

402

化石原料產品為重要化學品與能源 供給的來源,許多高分子材料與複合材料 爲石油化學工業產物所衍生之產品,但化 石原料為一種不可再生之資源,需要經 過數百萬年,甚至千萬年才能形成。面對 日漸枯竭的化石資源,積極尋求替代原 料為重要議題。具備再生性特質之生質 物(Biomass)為可取代化石資源之高潛力 原料,目為最佳的固定碳(Fixed carbon)材 料來源。林木為森林最重要產物,其組成 木質纖維之主要成分爲纖維素、半纖維素 和木質素,由於無法做為食用,因此不與 糧食資源產生競爭效應。目前,以生質物 為原料的產品受到高度關注,「生物基質 優先標章規則(BioPreferred Program)」在 2011年已經美國農業部(U.S. Department of Agriculture, USDA)正式定案生效,其內容 規範產品標示生物基質的含量,而目標則 在銷售更多含生物基質的產品(Bio-based products),並減少人類對於石油化學產品的 依賴(Stagner et al, 2012),進而降低對環境 的衝擊。

酚醛樹脂(Phenol-formaldehyde resins; PF resins)為工業上重要的合成樹脂,具 有高機械強度、耐熱性、尺寸安定性、 電氣絕緣性及耐溶劑性等特性(Gardziella et al., 2000),可應用於膠合劑(陳奕君 等,2006)、強化塑膠(Reinforced plastics) (Sreekala et al., 2000)、成型材料(Lee and Chen, 2008; Lee et al., 2014)等。PF樹脂亦 為玻璃石墨(Glassy carbon)的重要原料,在 惰性氣體環境下將PF樹脂經高溫碳化處理 可獲得高收率的碳材料,而藉由不同性質 之PF樹脂則可獲得多種型態碳材料而應用 於不同的產品,例如:活性碳(Oya et al., 1993)、分子篩碳(Molecular sieving carbons, MSC) (Centeno and Fuertes, 1999)、觸媒載 體(Catalyst carrier) (Oya et al., 1995)等。

生質材料取代石化原料的重要性日漸 受到重視,液化處理為將生質材料轉化為 化學原料的有效方式,因此生質材料可應 用於製備多種樹脂,如PF樹脂(陳奕君等 人,2006;Lee and Chen,2008;Lee *et al.*, 2012)、聚胺基甲酸酯樹脂(Polyurethane resin, PU resin)(Lee and Lin, 2008;Zhao *et al.*, 2012)、環氧樹脂(Epoxy resin)(Wu and Lee, 2010)等。PF樹脂可藉由合成條件之調 控以獲得不同性能之樹脂,其中Resol型PF 樹脂乃在甲醛與酚之莫耳比大於1之鹼性條 件下反應而得,其預聚合樹脂結構中含有 羥甲基,並可在加熱情況下直接進行縮合 及交聯作用而硬化,陳奕君等(2006)與Lee et al. (2012)曾應用液化木質材料製備Resol型水溶性PF樹脂,並將其做為合板製造用 膠合劑;Lee et al. (2014)則將液化本材應 用於Resol型醇溶性PF樹脂合成,並用以製 造樹脂含浸板材,其板材性質可符合CNS 10559標準。而Novolak型PF樹脂則在甲醛 與酚之莫耳比小於1之酸性條件下反應而 得,由於其預聚合樹脂結構中缺乏可供交 聯作用的羥甲基,故使用時需加入架橋劑 進行交聯反應,並使其形成三次元網狀結 構而硬化,Lee and Chen (2008)曾以液化本 質材料為原料合成Novolak型酚樹脂,加入 塡料、架橋劑及硬脂酸鋅製作成型材料。

熱安定性為PF樹脂產品在使用過程中 最重要性質之一。本研究將竹材以酚為溶 劑,硫酸和鹽酸為催化劑進行液化處理, 所得液化產物與甲醛反應製備Resol型水溶 性、醇溶性PF樹脂及Novolak型PF樹脂,另 以化石酚為原料合成對照組PF樹脂,各不 同條件PF樹脂進一步加工製作成型物,並 以熱重分析之結果探討PF樹脂成型物之熱 性質。

II、材料與方法

(I) 試驗材料

- 孟宗竹(*Phyllostachys heterocycla*, moso bamboo),採自南投縣竹山地區,4-5 年生,經乾燥、磨粉,取通過20 mesh 篩網之竹粉為液化用材料,通過200 mesh篩網之竹粉為成型材料之填料。
- 化學藥品:酚(Phenol; C₆H₅OH)、
 甲醛(Formalin; 37% HCHO_(aq))、
 硫酸(Sulfuric acid, H₂SO₄)、鹽酸

(Hydrochloric acid, HCl)、草酸(Oxalic acid; (COOH)₂)、氫氧化鈉(Sodium hydroxide; NaOH)、甲醇(Methanol; CH₃OH)、硬脂酸鋅(Zinc stearate; Zn (C₁₇H₃₅COO)₂)、氫氧化氨(Ammonium hydroxide)(以下簡稱氨水)、乙醇 (Ethanol; CH₃OH)、六亞甲基四胺 (Hexamethylene-tetramine; Hexamine; (CH₂)₆N₄)。

- (II) PF樹脂合成及成型物製作
 - 竹材液化處理:以酚為液化藥劑, 酚與孟宗竹粉重量比設定為3/1,以 H₂SO₄及HC1為催化劑,其添加量分 別為酚重量5%及10%,反應溫度分別 為130℃及120℃,將反應液維持在設 定溫度,並加熱反應60 min,其中以 H₂SO₄和HC1為催化劑的液化竹材分別 以S和C為代號。兩種液化竹材之固體 殘渣率分別為0.8%和6.6%,黏度分別 為24000 cps和1500 cps,不揮發分分別 為67.7%和45.0%。
 - Resol型水溶性PF樹脂合成及其成型 物製作:將液化竹材全量應用於樹脂 合成,並以酚之分子量(94 g/mol)為 液化竹材取料之計量基準,設定甲醛 /酚(Formaldehyde/phenol, F/P)莫耳比 1.8/1.0,NaOH/酚莫耳比0.6/1.0。將 液化竹材、甲醛及1/3量NaOH_(aq)(濃 度40%)置於反應瓶中,將反應系統於 30 min內加熱至85℃,維持溫度反應 10 min,隨後以分液漏斗逐漸滴入其 餘之NaOH_(aq),並維持85℃進行反應, 反應過程每隔一定時間取少量樣品測 定粘度,至粘度達200 cps以內部冷卻

器降溫,終止反應。以S和C為酚原料 之PF樹脂分別以S-1和C-1為代號,以 化石酚為原料之對照組PF樹脂以P-1為 代號。樹脂成型物製作時將Resol型水 溶性PF樹脂倒入成型模具,並採二階 段加熱法製作成型物,第一階段先以 50°C加熱12 hr,繼之以80°C加熱6 hr進 行第二階段加熱。

404

3. Resol型醇溶性PF樹脂合成及其成型 物製作:將液化竹材全量應用於樹脂 合成,並以酚之分子量代表液化竹材 做為計量標準。設定之甲醛與酚莫耳 比為1.6/1.0,以濃度28%氨水為催化 劑,氨(mL)/酚(莫耳)比為10/1,添加 量為每94 g酚原料添加15 mL。樹脂 合成時先將液化竹材、甲醛及計算量 1/3重之氨水置於500 mL四孔圓底反應 瓶中,以液化竹材S和C為原料者分別 於30和60 min內升溫至65℃,停止外 部加熱,並由分液漏斗逐漸滴入剩餘 之氨水,待氨水添加完畢,將反應液 升溫至80℃,並持溫進行反應至反應 液出現混濁,冷卻,靜置使反應液分 層,去水層得樹脂。其中以S和C為原 料所製備者之反應時間分別30 min和 26 min, 並分別以S-2和C-2為其代號, 以化石酚為原料之對照組之反應時間 為50 min,並以P-2為其代號。成型物 製作時先於樹脂中添加少量乙醇以降 低其粘度,隨後倒入成型模具中,並 採二階段加熱模式使硬化成型,第一 階段先以80℃加熱24 hr,隨後升溫至 135℃,並維持溫度0.5 hr使其架橋硬 化成型。

4. Novolak型PF樹脂合成及其成型物之 製作:將液化竹材全量應用於樹脂合 成,並以酚之分子量代表液化竹材做 為計量標準。設定甲醛/酚莫耳比為 0.8/1.0,取計算量液化竹材於四口圓 底反應瓶,加入50g甲醇為溶劑,將反 應液加熱至50-60°C,由分液漏斗將計 算量甲醛逐漸滴入反應瓶,並控制滴 入速度使約於40 min內添加完畢,隨 後開啓加熱器,維持沸騰溫度反應60 min,隨後冷卻至常溫,並調整其pH 值至7-7.5。以S及C為原料之樹脂以S-3 及C-3為代號,以化石酚為原料之對照 組以P-3為代號。成型物製作時將樹脂 與六亞甲基四胺、竹粉及硬脂酸鋅(重 量比39/9.4/50/1)混合均匀後倒入成型 模具,成型物尺寸10 cm×10 cm×0.4 cm,採平板式熱壓成型,設定成板比 重1.0,熱壓溫度150℃,熱壓時間10 min, 壓力10 kgf/cm²。

(III) 成型物之熱重分析

採用儀器為Perkin-Elmer Pyris 1熱重量 分析儀(Thermogravimetric Analyzer, TGA)。 將成型物磨碎,以60℃真空烘箱乾燥24 hr 去除水分,取乾燥之成型物粉末置於白 金坩鍋中,精稱之。測試時在氦氣環境 下進行,加熱溫度範圍為室溫至800℃, 升溫速率20℃/min,並由其熱重量分析法 (Thermogravimetry, TG)及微分熱重量法 (Derivative thermogravimetry, DTG)分析各不 同條件樹脂所製作成型物之熱裂解行為。

III、結果與討論

(I) 化石酚為原料PF樹脂成型物之TGA熱 重分析

熱重量分析法乃測定材料在加熱過程 因熱裂解等反應而導致之質量連續變化, 亦即以程式控制使溫度連續變化,並將試 樣重量與溫度關係以函數方式表示,此結 果即爲熱重量分析圖,將重量變化曲線加 以微分則可顯示質量變化速度,此即爲微 分熱重量法。

圖1為利用化石酚為原料的Resol型水 溶性(P-1)、醇溶性(P-2)及Novolak型PF樹 脂(P-3)成型物之熱重損失曲線,其中P-2與 P-3於加熱初期無明顯重量變化,而P-1則在 加熱初期即出現明顯之重量損失,P-2之重 量損失主要發生在450-600℃,P-3約在250 至600℃有明顯的重量損失。

圖1 化石酚為原料PF樹脂製作成型物之TG曲線。P-1為Resol型水溶性PF樹脂;P-2為Resol型醇 溶性PF樹脂;P-3為Novolak型PF樹脂。

Fig. 1 TG curves of molding made with P-1, P-2 and P-3. P-1: Resol type water-soluble PF resin; P-2: Resol type alcohol-soluble PF resin; P-3: Novolak type PF resin.

圖2為三種PF樹脂成型物之DTG圖, 其中P-1出現四個熱重損失速率波峰,由 於P-1為合成時F/P莫耳比1.8/1之Resol型PF 樹脂,其於低溫側50-300℃出現重量損失 推測為合成時設定F/P莫耳比較高,其成 型物中存在未反應甲醛及較多的羥甲基、 二亞甲基鍵醚結構,此結構易受熱逸散 或斷裂而造成較大的重量損失(Yamashita and Ouchi, 1981),而在約550-600℃出現 明顯重量損失速率波峰則為PF樹脂發生熱 分解的溫度,此階段發生分子重新排列、 芳香族縮合、開裂、脫水、去氫等反應 (Románmartínez et al., 1996),反應後氣體 揮散導致重量大量損失。P-2雖有三個重 量損失速率波峰,然其第一波峰與第二波 峰不甚明顯,推測因合成時F/P莫耳比為 1.4/1,故低溫側與甲醛、羥甲基有關之反 應較爲緩和,在550-600℃則同樣出現明顯 的PF樹脂熱分解重量損失峰。P-3爲含50% 竹粉爲填料之成型物,因此推測50-100℃

圖2 化石酚原料製作PF樹脂成型物之DTG曲線。P-1為Resol型水溶性PF樹脂;P-2為Resol型醇 溶性PF樹脂;P-3為Novolak型PF樹脂。

Fig. 2 DTG of moldings fossil phenol based moldings made with P-1, P-2 and P-3. P-1: Resol type water-soluble PF resin; P-2: Resol type alcohol-soluble PF resin; P-3: Novolak type PF resin.

重量損失為竹材之吸著水散失,Yang et al. (2007)曾指出半纖維素主要熱裂解溫度發生 在220-315℃,纖維素則為315-400℃。故 P-3在200-400℃之重量損失包含竹材組成 分的熱分解,而450℃以上之重量損失峰則 為芳香族結構之木質素和PF樹脂之熱分解 (Sarkar and Adhikari, 2000)所造成。

表1為三種成型物各階段熱裂解之 TGA分析參數,其中P-1、P-2及P-3之第一 階段熱裂解發生溫度分別為96.2、127.3及 59.1℃,此階段之重量損失率分別為9.2、 5.3及2.7%。而第三階段熱裂解起始溫度分 別為390.5、506.4及441.2℃,重量損失率分 別為2.4、27.4及25.8%。其中以P-2有較高 之第一階段及第三階段熱裂解起始溫度。 三種樹脂成型物之焦炭率比較亦以P-2最 高,達62.5%,P-1次之,P-3之最低。此乃 因P-2採用之F/P莫耳比較P-1低,故低溫側 熱裂解反應較為緩和,熱解成分較少,而 P-3中含50%竹粉做為填料,生質物熱分解

Table 1	TGA pa	arameters	of molding	made	with PF	resins	prepared	l from	fossil-bas	ed phenol
							F			

	Peak (1)		Peak (2)		Pea	Peak (3)		Peak (4)	
成型物	Onset 溫度 (℃)	重量 損失率 (%)	Onset 溫度 (℃)	重量 損失率 (%)	Onset 溫度 (℃)	重量 損失率 (%)	Onset 溫度 (℃)	重量 損失率 (%)	800°C 焦炭率 (%)
P-1	96.2	9.2	162.1	14.1	390.5	2.4	517.3	14.8	59.1
P-2	127.3	5.3	398.1	4.9	506.4	27.4	_	_	62.5
P-3	59.1	2.7	295.5	30.9	441.2	25.8	—	—	42.4

損失較高所致。綜合上述三種化石酚為原 料PF樹脂成型物之熱重分析數據結果,P-2 成型物的熱安定性最佳,P-1次之,推測因 此造成P-1硬化不完全,熱安定性低於P-2。 (II) Resol型水溶性PF樹脂成型物之TGA熱

重分析

圖3為液化竹材為原料Resol型水溶性 PF樹脂S-1、C-1及化石酚為原料PF樹脂P-1 所製作成型物之熱重損失曲線,由圖顯示 三者均在加熱初期即開始發生熱裂解,並 導致重量持續下降。三種酚原料PF樹脂比 較,以液化竹材為原料之S-1與C-1在450℃ 前之熱重損失較P-1緩和,顯示較佳之熱安 定性。圖4之DTG曲線圖則顯示三者成型物 均出現4個熱重損失速率波峰,其中P-1在 低溫側之熱重損失速率波峰(1)、(2)之強度 大於S-1及C-1,顯示其在此階段之熱裂解 較快速,而第三階段350-450℃之熱重損失 速率波峰(3)則以S-1及C-1略大於P-1,高溫 側第四階段450-600℃ (4)之熱重損失速率 波峰則以P-1明顯大於S-1和C-1。低溫側之 熱重損失主要為甲醛揮發、羥甲基斷裂、 亞甲基鍵結斷裂及再縮合水釋出等造成, S-1和C-1此反應發生較少,450-600℃之重 量損失峰為芳香族的熱分解。比較液化竹 材之中未被液化之固體部分與竹材之FTIR 圖譜,證實液化過程中竹材有降解作用, 酸性催化劑將竹材降解後,木質素溶於酚 溶劑中(Chen and Lee, 2008), Khan et al. (2004)曾證實含木質素成分的水溶性Resol 型PF樹脂具有較高的三次元網狀結構,可 增加熱安定性。

Fig. 3 TGA curve of moldings made with Resol type water-soluble PF resins S-1, C-1 and P-1. S-1, C-1 and P-1 were synthesized from liquefied bamboo with H_2SO_4 as catalysts, liquefied bamboo with HCl as catalysts and fossil phenol.

圖4 Resol型水溶性PF樹脂成型物之DTG曲線。S-1以H₂SO₄為催化劑之液化竹材製備者:C-1為以HCl為催化劑之液化竹材製備者;P-1為化石酚為原料者。

Fig. 4 DTG of moldings made with Resol type water-soluble PF resins S-1, C-1 and P-1. S-1, C-1 and P-1 were synthesized from liquefied bamboo with H_2SO_4 as catalysts, liquefied bamboo with HCl as catalysts and fossil phenol.

表2為S-1、C-1及P-1之各階段熱裂解 之TGA分析參數,其中S-1、C-1及P-1之 第一階段熱裂解之起始溫度分別為73.2、 89.3及96.2℃,此階段之重量損失率分別 為7.7、12.3及9.2%。而S-1、C-1及P-1在第 四階段熱裂解之起始溫度則分別為542.1、 511.1及517.3℃,重量損失率分別為6.5、 6.4及14.8%。三種樹脂成型物之焦炭率介 於56.5-59.7%。熱重損失曲線及參數結果 指出含有生質物S-1成型物熱安定性優於 P-1。

表2 R	esol型水溶性PF樹脂成型物之熱重參數
------	----------------------

Table 2 TGA parameters of moldings made with Resol type water-soluble PF resins

	Peak (1)		Peak (2)		Peal	Peak (3)		Peak (4)	
成型物	Onset 溫度 (℃)	重量 損失率 (%)	Onset 溫度 (℃)	重量 損失率 (%)	Onset 溫度 (°C)	重量 損失率 (%)	Onset 溫度 (°C)	重量 損失率 (%)	800℃ 焦炭率 (%)
S-1	73.2	7.7	186.9	15.4	412.5	15.4	542.1	6.5	59.7
C-1	89.3	12.3	102.8	9.3	440.5	12.3	511.1	6.4	56.5
P-1	96.2	9.2	162.1	14.1	390.5	2.4	517.3	14.8	59.1

(III) Resol型醇溶性PF樹脂成型物之TGA 熱重分析

圖5為液化竹材為原料之Resol型醇溶性 PF樹脂S-2、C-2與化石酚為原料之P-2所製 作成型物之熱重損失曲線,三者均在加熱初 期即開始發生重量持續下降之現象,相較於 P-2,S-2與C-2初期熱重損失較爲快速。圖6 爲其DTG曲線圖,其中S-2與C-2出現四個重

- 圖5 Resol型醇溶性PF樹脂成型物之熱重曲線。S-2以H₂SO₄為催化劑之液化竹材製備者;C-2為以HCl為催化劑之液化竹材製備者;P-2為化石酚為原料者。
- Fig. 5 TGA curve of moldings made with Resol type alcohol-soluble PF resins S-2, C-2 and P-2. S-2, C-2 and P-2 were synthesized from liquefied bamboo with H_2SO_4 as catalysts, liquefied bamboo with HCl as catalysts and fossil phenol.

- 圖6 Resol型醇溶性PF樹脂成型物之DTG曲線。S-2以H₂SO₄為催化劑之液化竹材製備者;C-2為以HCl為催化劑之液化竹材製備者;P-2為化石酚為原料者。
- Fig. 6 DTG of moldings made with Resol type alcohol-soluble PF resins S-2, C-2 and P-2. S-2, C-2 and P-2 were synthesized from liquefied bamboo with H_2SO_4 as catalysts, liquefied bamboo with HCl as catalysts and fossil phenol.

-409-

生質物基質酚醛樹脂成型物熱安定性分析

量損失速率波峰,由於S-2與C-2在加熱初期 的熱重損失較明顯失,因此在50-300℃低溫 側之重量損失速率波峰強度較明顯。而P-2 最激烈之熱重損失主要發生在450-600℃之 高溫側,並形成一個強烈的熱重損失速率波 峰,此乃由於P-2以化石酚為原料,其中不 含生質物組成分,故其熱裂解主要爲酚-亞 甲基架橋結構之熱裂解所致。

表3為S-2、C-2及P-2各階段熱裂解之 TGA分析參數,其中S-2、C-2及P-2之第一 階段起始熱裂解之溫度分別為198.8、94.9 及127.3℃,重量損失率分別為6.0、6.0及 5.3%,其中以S-1之起始熱裂解溫度最高。 S-2和C-2在高溫側第四階段熱裂解之起始 溫度分別為492.5和522.5℃,重量損失率分 別為13.7和12.1%,而P-1在高溫側第三階段 熱裂解之起始溫度為506.4℃,重量損失率 為27.4%。顯示S-2和C-2組成中含有纖維素 和半纖維素,因此300-500℃的熱重損失速 率波峰分布較廣,而不含生質物之P-2在加 熱至500℃以上始發生大量熱裂降。三者焦 炭率介於61.5-62.5%。依據熱裂解之起始溫 度,P-2在低溫側熱安定性高於S-2和C-2, 500-700℃熱安定性則反之,醇溶型PF樹脂 由於甲醛/酚的莫耳比較水溶性者低,因此 推測低溫側部分的鍵結斷裂及再縮合水釋 出等造成的裂解反應較為強烈,反之在高 溫側的芳香族熱分解則較少。

表3 Resol型醇溶性PF樹脂成型物之熱重參數 Table 3 TGA parameters of moldings made with Resol type alcohol-soluble PF resins

	Peak (1)		Peak (2)		Peal	Peak (3)		Peak (4)	
成型物	Onset 溫度 (℃)	重量 損失率 (%)	Onset 溫度 (℃)	重量 損失率 (%)	Onset 溫度 (°C)	重量 損失率 (%)	Onset 溫度 (°C)	重量 損失率 (%)	800 C 焦炭率 (%)
S-2	198.8	6.0	356.9	9.6	437.8	2.8	492.5	13.7	61.5
C-2	94.9	6.0	279.2	8.5	377.2	8.5	522.5	12.1	61.5
P-2	127.3	5.3	398.1	4.9	506.4	27.4	_	_	62.5

(IV) Novolak型PF樹脂成型物之TGA熱重

分析

圖7為液化竹材為原料之Novolak型PF 樹脂S-3、C-3及化石酚為原料之P-3所製作 成型物之熱重損失曲線,三者有相似的趨 勢,在加熱至200℃前無明顯重量變化, 200-500℃熱重損失快速下降,500-800℃則 下降趨緩。圖8為其DTG曲線圖,三者均出 現三個熱重損失速率波峰,因成型物中含 有50%的竹粉填料,因此50-150℃低溫側 之熱重損失速率波峰為竹粉結合水脫離所 致。而三種樹脂成型物在200-400℃均出現 明顯之熱重損失速率波峰,此主要為填料 竹粉之纖維素和半纖維素在此階段大量熱 裂解所造成,其中並伴隨PF樹脂的甲醛揮 發、羥甲基斷裂、亞甲基鍵結斷裂和再縮 合反應,而400-600℃之重量損失速率波峰 則主要為PF樹脂結構之熱裂解。

- 圖7 不同Novolak型PF樹脂成型物之熱重曲線。S-3以H₂SO₄為催化劑之液化竹材製備者;C-3為以HCl為催化劑之液化竹材製備者;P-3為化石酚為原料者。
- Fig. 7 TGA curve of moldings made with Novolak type PF resins S-3, C-3 and P-3. S-4, C-4 and P-3 were synthesized from liquefied bamboo with H_2SO_4 as catalysts, liquefied bamboo with HCl as catalysts and fossil phenol.

- 圖8 不同Novolak型PF樹脂成型物之DTG曲線。S-3以H₂SO₄為催化劑之液化竹材製備者;C-3為以HCl為催化劑之液化竹材製備者;P-3為化石酚為原料者。
- Fig. 8 DTG of moldings made with Novolak type PF resins S-3, C-3 and P-3. S-4, C-4 and P-3 were synthesized from liquefied bamboo with H_2SO_4 as catalysts, liquefied bamboo with HCl as catalysts and fossil phenol.

-411-

生質物基質酚醛樹脂成型物熱安定性分析

表4為S-3、C-3及P-3各階段熱裂解之 TGA分析參數,其中S-3、C-3及P-3第一 階段熱裂解之起始溫度分別為69.3、50.5 及59.1℃,重量損失率分別為6.4、5.9及 2.7%。而S-3、C-3及P-3在第二階段主要 熱裂解之起始溫度分別為308.7、287.4及 295.5℃,重量損失率分別為39.6、45.6及 30.9%。其中以S-3之溫度最高,P-3重量損 失最低。S-3、C-3及P-3第三階段熱裂解之

起始溫度分別為428.5、433.8及441.2℃, 重量損失率則相近,介於21.6-25.8%之間。 三種樹脂成型板加熱至800℃之焦炭率介於 33.8-42.4%,其中以P-3的焦炭率最高,推 測因S-3及C-3以液化竹材為原料,所含液 化後生質物比例較高所致。由上述比較可 知,S-3、C-3及P-3三種樹脂成型板有相似 的熱裂解行為,綜合上述熱重分析結果, P-1的熱安定性較高,C-3較低。

表4 Novolak型PF樹脂成型物之熱重參數

Table 4	TGA parameters	of moldings made	with Novola	k type PF resin
---------	----------------	------------------	-------------	-----------------

	Pea	k (1)	Peal	x (2)	Peak	800°C	
成型物	Onset 溫度 (℃)	重量 損失率 (%)	Onset 溫度 (℃)	重量 損失率 (%)	Onset 溫度 (℃)	重量 損失率 (%)	800 C 焦炭率 (%)
S-3	69.3	5.4	308.7	39.6	428.5	23.4	37.0
C-3	50.5	5.9	287.4	45.6	433.8	21.6	33.8
P-3	59.1	2.7	295.5	30.9	441.2	25.8	42.4

IV、結論

本研究將孟宗竹竹粉以酚為溶劑進行 液化處理,並利用酚液化孟宗竹製備Resol 型水溶性、醇溶性PF樹脂及Novolak型PF 樹脂及其成型物,進一步以熱重分析比較 各不同條件成型物之熱安定性。其中以生 物質為基質之Resol型水溶性PF樹脂成型物 熱安定性大於以化石酚為原料者。Resol型 醇溶性PF樹脂所製作成型物在低溫側之熱 安定性以化石酚為原料者高於以生質物為 原料者,500-700°C高溫側之熱安定性則反 之。各條件Resol型PF樹脂所製作成型物之 焦炭率介於56.5-62.5%間。以化石酚為原料 之Novolak型PF樹脂所製作成型物的熱安定 性高於以生質物為基質之樹脂,其焦炭率 介於33.8-42.4%之間。

V、引用文獻

- 陳奕君、李文昭、劉正字 (2006) 酚液化孟 宗竹材製造Resol型水溶性PF樹脂。林產 工業 25(3): 249-258。
- 中國民國國家標準CNS 10559標準印刷電路 用銅積層板(紙基材酚樹脂)。
- Centeno, T.A. and A.B. Fuertes (1999) Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science 160(2): 201-211.

- Chen, Y.C. and W.J. Lee (2008) Characteristic of Phenolated moso bamboo (*Phyllostachys pubesens*) liquefied under various liquefaction conditions. Taiwan Journal of Forest Science.; 23(3): 221-31.
- Gardziella, A., L. Pilato and A. Knop (2000) Phenolic resins: Chemistry, Reactions, Mechanism. Phenolic Resins. Springer, New York. 24-82.
- Khan, M.A., S.M. Ashraf and V.P. Malhotra (2004) Development and characterization of a wood adhesive using bagasse lignin. International Journal of Adhesion and Adhesives 24(6): 485-493.
- Lee, W.J. and Y.C. Chen (2008) Novolak PF resins prepared from phenol liquefied *Cryptomeria japonica* and used in manufacturing moldings. Bioresource Technology 99(15): 7247-7254.
- Lee, W.J. and M.S. Lin (2008) Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. Journal of Applied Polymer Science 109(1): 23-31.
- Lee, W.J., C.L. Kang, K.C. Chang and Y.C. Chen (2012) Synthesis and properties of resol-type phenol-formaldehyde resins prepared from H₂SO₄- and HCl-catalyzed phenol-liquefied *Cryptomeria japonica* wood. Holzforschung 66: 67-72.
- Lee, Y.Y., W.J Lee, L.Y. Hsu and H.M. Hsieh (2014) Properties of molding plates made with various matrices impregnated with PF and liquefied wood-based PF resins.

Holzforschung 68(1): 37-43.

- Oya, A., S. Yoshida, Y. Abe, T. Iizuka and N. Makiyama (1993) Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate. Carbon 31(1): 71-73.
- Oya, A., S. Yoshida, J. Alcaniz-Monge and A. Linares-Solano (1995) Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 33(8): 1085-1090.
- Románmartínez, M.C., D. Cazorlaamorós,
 D. Cazorlaamorós, A. Linaressolano, C. S.
 De Lecea and F. Atamny (1996) Structure study of a phenolformaldehyde char. Carbon 34(6): 719-727.
- Sarkar, S. and B. Adhikari (2000) Ligninmodified phenolic resin: synthesis optimization, adhesive strength, and thermal stability. Journal of Adhesion Science & Technology 14(9): 1179-1193.
- Stagner, J., S. Tseng and E.L. Tam (2012) Biobased polymers and end-of-life vehicles. Journal of Polymers and the Environment 20(4): 1046-1051.
- Sreekala, M.S., M.G. Kumaran, S. Joseph, M. Jacob and S. Thomas (2000) Oil palm fibre reinforced phenol formaldehyde composites: Influence of fibre surface modifications on the mechanical performance. Applied Composite Materials 7(5): 295-329.
- Wu, C.C. and W.J. Lee (2010) Synthesis and properties of copolymer epoxy resins prepared from copolymerization of

bisphenol A, epichlorohydrin, and liquefied Dendrocalamus latiflorus. Journal of Applied Polymer Science 116(4): 2065-2073.

Yang, H., R. Yan, H. Chen, D.H. Lee and C. Zheng (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12-13): 1781-8.

Yamashita, Y. and K. Ouchi (1981) A study on

carbonization of phenol-formaldehyde resin labelled with deuterium and ¹³C. Carbon 19(2): 89-94.

Zhao, Y., N. Yan and M. Feng (2012) Polyurethane foams derived from liquefied mountain pine beetle-infested barks. Journal of Applied Polymer Science 123(5): 2849-58.